τ-tilting finite simply connected algebras

Qi Wang

Osaka University

@Qingdao, July 15, 2019

Outline

Introduction and motivation
τ-tilting theory
Mutation
Poset structure

Simply connected algebras

Staircase algebras

References

Auslander-Reiten translation

Throughout, let Λ be a finite dimensional basic algebra over an algebraically closed field K. For a Λ-module M with a minimal projective presentation

$$
P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{d_{0}} M \longrightarrow 0,
$$

we have

$$
\operatorname{Tr} M:=\operatorname{coker} \operatorname{Hom}_{\Lambda}\left(d_{1}, \Lambda\right) .
$$

The Auslander-Reiten translation is defined by

$$
\tau M:=D \operatorname{Tr} M,
$$

where $D=\operatorname{Hom}_{K}(-, K)$.

Introduction

In 2014, Adachi-lyama-Reiten introduced support τ-tilting modules for any Λ and constructed the (left or right) mutation of them, which has the following nice properties:

- Mutation (left or right) is always possible.
- There is a partial order on the set of (isomorphism classes of) basic support τ-tilting modules such that its Hasse quiver realizes the left mutation.

This is considered as a generalization of the classical tilting theory via mutations.

We call $\wedge \tau$-tilting finite if there are only finitely many (iso. classes of) basic support τ-tilting Λ-modules.

Motivation

Note that representation-finite algebras are τ-tilting finite and the converse is not true in general. For example, let

$$
\Lambda_{n}=K(\bullet \xrightarrow{a} \bullet b) /<b^{n}, a b^{2}>, n \geqslant 2
$$

then Λ_{n} is τ-tilting finite. But Λ_{n} is

- representation-finite if $n=2,3,4,5$.
- tame if $n=6$.
- wild if $n \geqslant 7$.

Therefore, we want to know which kind of algebras meets the following conditions:
τ-tilting finite \Leftrightarrow representation-finite.

Besides, many scholars have studied the support τ-tilting modules of various algebras. For example,

- Gentle algebras (Plamondon, 2018).
- Tilted and cluster-tilted algebras (Zito, 2019).
- Algebras with radical square zero (Adachi, 2016).
- Brauer graph algebras (Adachi-Aihara-Chan, 2018).
- Preprojective algebras of Dynkin type (Aihara-Mizuno, 2016, Mizuno, 2014).

τ-tilting theory

We denote by $|M|$ the number of (iso. classes of) indecomposable direct summands of M.

Definition 1.1 (Adachi-lyama-Reiten, 2014)
Let M be a right Λ-module and $P \in \operatorname{proj} \Lambda$.
(1) M is called τ-tilting if $\operatorname{Hom}_{\wedge}(M, \tau M)=0$ and $|M|=|\Lambda|$.
(2) M is called support τ-tilting if M is a τ-tilting $(\Lambda /\langle e\rangle)$-module, where e is an idempotent of Λ.

We denote by $\tau \tau$-tilt Λ the set of (iso. classes of) basic support τ-tilting Λ-modules.

Example

Let $\Lambda=K(1 \underset{b}{\stackrel{a}{\rightleftarrows}} 2) /<a b, b a>$ and we denote

$$
S_{1}=1, S_{2}=2, P_{1}=\frac{1}{2}, P_{2}=\frac{1}{1} .
$$

Then,

$$
\tau\left(S_{1}\right)=S_{2}, \tau\left(S_{2}\right)=S_{1}, \tau\left(P_{1}\right)=0, \tau\left(P_{2}\right)=0
$$

Thus, for example,

- $P_{1} \oplus P_{2}, P_{1} \oplus S_{1}$ and $S_{2} \oplus P_{2}$ are τ-tilting modules.
- S_{1} and S_{2} are support τ-tilting modules.

Mutation

We denote by add (M) (respectively, $\operatorname{Fac}(M)$) the full subcategory whose objects are direct summands (respectively, factor modules) of finite direct sums of copies of M.

Definition 1.2 (Adachi-lyama-Reiten, 2014)

Let $T=M \oplus N$ be a basic τ-tilting module, where $M \notin \operatorname{Fac}(N)$ is an indecomposable summand. We take an exact sequence with a minimal left $\operatorname{add}(N)$-approximation π :

$$
M \xrightarrow{\pi} N^{\prime} \longrightarrow U \longrightarrow 0,
$$

we call $\mu_{M}^{-}(T):=U \oplus N$ the left mutation of T with respect to M.

Remark

π is called a minimal left $\operatorname{add}(N)$-approximation if $N^{\prime} \in \operatorname{add}(N)$ and it satisfies the following conditions:
(i) every $h: N^{\prime} \rightarrow N^{\prime}$ that satisfies $h \circ \pi=\pi$ is an automorphism.

(ii) for any $N^{\prime \prime} \in \operatorname{add}(N)$ and $g: M \rightarrow N^{\prime \prime}$, there exists
$f: N^{\prime} \rightarrow N^{\prime \prime}$ such that $f \circ \pi=g$.

Example

Let $\Lambda=K(1 \underset{b}{\stackrel{a}{\rightleftarrows}} 2) /<a b, b a>$, then $P_{1} \oplus P_{2}$ is a τ-tilting module. We consider the left mutation with respect to P_{2},

$$
P_{2} \xrightarrow{\pi} P_{1} \longrightarrow \text { coker } \pi \longrightarrow 0,
$$

where $\pi: \stackrel{e_{2}}{b} \xrightarrow{a \cdot}{ }_{a}^{e_{1}}$ is a minimal left $\operatorname{add}\left(P_{1}\right)$-approximation, then

$$
\operatorname{coker} \pi=S_{1} \text { and } \mu_{P_{2}}^{-}(\Lambda)=P_{1} \oplus S_{1}
$$

In fact, we have the following mutation quiver of $s \tau$-tilt Λ.

Poset structure

Definition 1.3 (Adachi-Iyama-Reiten, 2014)
For $M, N \in \mathrm{~s} \tau$-tilt Λ, we say $M \geqslant N$ if $\operatorname{Fac}(N) \subseteq \operatorname{Fac}(M)$.

Example

Let Λ be the algebra given before. The Hasse quiver of $s \tau$-tilt Λ is

Proposition 1.4 (Adachi-lyama-Reiten, 2014)
The mutation quiver $\mathcal{Q}(\mathrm{s} \tau$-tilt $\Lambda)$ and the Hasse quiver $\mathcal{H}(\mathrm{s} \tau$-tilt $\Lambda)$ coincide.

Proposition 1.5 (Adachi-lyama-Reiten, 2014)
If the mutation quiver $\mathcal{Q}(\mathrm{s} \tau$-tilt $\Lambda)$ contains a finite connected component, then it exhausts all support τ-tilting modules.

Reduction theorems

It is well-known that any idempotent truncation of a τ-tilting finite algebra is also τ-tilting finite. Furthermore, we have

Proposition 1.6 (Adachi-lyama-Reiten, 2014)
There exists a poset isomorphism between $\boldsymbol{s} \tau$-tilt Λ and $\mathrm{s} \tau$-tilt $\Lambda^{\circ \mathrm{op}}$.

Proposition 1.7 (Eisele-Janssens-Raedschelders, 2018)
Let I be a two-sided ideal generated by elements which are contained in the center and the radical, then there exists a poset isomorphism between $\mathrm{s} \tau$-tilt Λ and $\mathrm{s} \tau$-tilt (Λ / I).

Minimal representation-infinite algebras

An algebra Λ is called minimal rep.-infinite if Λ is rep.-infinite, but $\Lambda / \Lambda e \Lambda$ is rep.-finite for any non-zero idempotent e of Λ.

We denote by Γ_{Λ} the Auslander-Reiten quiver of Λ. A connected component C of Γ_{Λ} is called preprojective if

- there is no oriented cycle in C, and
- any module in C is of form $\tau^{-k}(P)$ for some $k \in \mathbb{N}$ and some indecomposable projective module P.

Proposition 1.8 (Happel-Vossieck, 1983)

A m.r.i. algebra with preprojective component is either a n-Kronecker algebra ($n \geqslant 2$) or a tame concealed algebra, which is of type $\widetilde{\mathbb{A}}_{n}, \widetilde{\mathbb{D}}_{n}(n \geqslant 4), \widetilde{\mathbb{E}}_{6}, \widetilde{\mathbb{E}}_{7}$ or $\widetilde{\mathbb{E}}_{8}$.

Tilted algebras

A tilting Λ-module T provided:

- $|T|=|\Lambda| ;$
- gl. $\operatorname{dim} . T \leqslant 1$;
- $\operatorname{Ext}_{\Lambda}^{1}(T, T)=0$.

A (concealed) tilted algebra of type Q is the endomorphism algebra of a (preprojective) tilting module over a hereditary algebra $K Q$.

Lemma 1.9 (Zito, 2019)
Let Λ be a tilted or cluster-tilted algebra, then Λ is τ-tilting finite if and only if Λ is representation-finite.

Simply connected algebras

Let $\Lambda=K Q / I$ be an algebra with a quiver $Q=\left(Q_{0}, Q_{1}, s, t\right)$ and an admissible ideal I. For each arrow $\alpha \in Q_{1}$, let α^{-}be its formal inverse with $s\left(\alpha^{-}\right)=t(\alpha)$ and $t\left(\alpha^{-}\right)=s(\alpha)$. Then, we set

$$
Q_{1}^{-}=\left\{\alpha^{-} \mid \alpha \in Q_{1}\right\}
$$

A walk is a formal composition $w=w_{1} w_{2} \ldots w_{n}$ with $w_{i} \in Q_{1} \cup Q_{1}^{-}$for all $1 \leqslant i \leqslant n$. Then, we set

$$
s(w)=s\left(w_{1}\right), t(w)=t\left(w_{n}\right)
$$

and denote by 1_{x} the trivial path at vertex x.
For walks w and u with $s(u)=t(w)$, the composition $w u$ is defined in the obvious way.

Let \sim be the smallest equivalence relation on the set of all walks in Q satisfying the following conditions:

- For each $\alpha: x \rightarrow y$ in Q_{1}, we have $\alpha \alpha^{-} \sim 1_{x}$ and $\alpha^{-} \alpha \sim 1_{y}$.
- For each minimal relation $\sum_{i=1}^{n} \lambda_{i} \omega_{i}$ in I, we have $\omega_{i} \sim \omega_{j}$ for all $1 \leqslant i, j \leqslant n$.
- If u, v, w and w^{\prime} are walks and $u \sim v$, then $w u w^{\prime} \sim w v w^{\prime}$ whenever these compositions are defined.
We denote by $[w]$ the equivalence class of a walk w.
Let $x \in Q_{0}$. The set $\Pi_{1}(Q, I, x)$ of equivalence classes of all walks w with $s(w)=t(w)=x$ is a group via $[u] \cdot[v]=[u v]$, and one can show that it does not depend on the choice of x. Thus, we define the fundamental group of (Q, I) as follows.

$$
\Pi_{1}(Q, I):=\Pi_{1}(Q, I, x)
$$

Recall that $\Lambda=K Q / I$ is called triangular if Q is acyclic.
Definition 2.1 (Assem-Skowroński, 1988)
A connected triangular algebra Λ is simply connected if, for every presentation (Q, I) of Λ, the fundamental group $\Pi_{1}(Q, I)$ is trivial.

We have the following examples.
(1) All tree algebras are simply connected.
(2) A hereditary algebra is simply connected if and only if its quiver is a tree.

Theorem 2.2 (W, 2019)
Let Λ be a simply connected algebra, then it is τ-tilting finite if and only if Λ is representation-finite.

A full subquiver Q^{\prime} of Q is a convex subquiver if any path in Q with source and target in Q^{\prime} lies entirely in Q^{\prime}. Let $I^{\prime}:=K Q^{\prime} \cap I$, then $K Q^{\prime} / I^{\prime}$ is called a convex subalgebra of $K Q / I$.

An algebra is called critical if it is rep.-infinite, but any proper convex subalgebra is rep.-finite. Note that the path algebra $K Q$ with the following quiver Q, is critical but not m.r.i..

A grading of a tree T is a function $g: T_{\text {vertex }} \rightarrow \mathbb{N}$ satisfying

- $g^{-1}(0) \neq \varnothing$.
- $g(x)-g(y) \in 1+2 \mathbb{Z}$, whenever x and y are neighbours in T. A graded tree is a pair (T, g) formed by a tree T and a grading g.

Sketch of the proof:
By [Bongartz, 1984], Λ is rep.-finite if and only if it does not contain a critical convex subalgebra, which arises from a graded tree. On the other hand, such a critical algebra is a m.r.i. algebra with preprojective component.

Staircase algebras

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$ be a (non-increasing) partition of a positive integer n. It is well-known that we can visualize λ by the corresponding Young diagram $Y(\lambda)$. For example,

$$
\lambda=(3,2,1) \Leftrightarrow Y(\lambda)=\begin{aligned}
& \\
& \\
& \hline
\end{aligned}
$$

For any partition $\lambda \vdash n$, let

- Q_{λ} is a quiver such that the vertices are given by the boxes in $Y(\lambda)$, the arrows are given by drawing arrows from right to left and from bottom to top.
- I_{λ} is a two-sided ideal generated by all commutativity relations for all squares appearing in Q_{λ}.
Then the algebra $\mathcal{A}(\lambda):=K Q_{\lambda} / I_{\lambda}$ is called a staircase algebra.

If $\lambda=(3,2,1)$, then Q_{λ} is given by

Then, the corresponding staircase algebra $\mathcal{A}(\lambda)$ is defined by

$$
\mathcal{A}(\lambda):=K Q_{\lambda} /<\beta_{2,2} \alpha_{2,1}-\alpha_{2,2} \beta_{1,2}>.
$$

Proposition 3.1 (Boos, 2017)
For any $\lambda \vdash n, \mathcal{A}(\lambda)$ is triangular and simply connected.

Proposition 3.2 (Boos, 2017)

A staircase algebra $\mathcal{A}(\lambda)$ with $\lambda \vdash n$ is
(1) representation-finite if and only if one of the following holds:

- $\lambda \in\left\{(n),\left(n-k, 1^{k}\right),(n-2,2),\left(2^{2}, 1^{n-4}\right)\right\}$ for $k \leqslant n$.
- $n \leqslant 8$ and $\lambda \notin\left\{(4,3,1),\left(3^{2}, 2\right),\left(3,2^{2}, 1\right),\left(4,2,1^{2}\right)\right\}$.
(2) tame concealed if and only if λ comes up in the following list:

$$
\begin{gathered}
(6,3),(6,2,1),\left(5,2^{2}\right),(4,3,1),\left(4,2,1^{2}\right) \\
\left(3,2^{2}, 1\right),\left(3^{2}, 1^{3}\right),\left(2^{3}, 1^{3}\right),\left(3,2,1^{4}\right)
\end{gathered}
$$

(3) tame, but not tame concealed if and only if λ comes up in the following list:

$$
\left(5^{2}\right),(5,4),\left(4^{2}, 1\right),\left(3^{3}\right),\left(3^{2}, 2\right),\left(3,2^{3}\right),\left(2^{5}\right),\left(2^{4}, 1\right)
$$

Otherwise, $\mathcal{A}(\lambda)$ is wild.

Corollary 3.3 (W, 2019)

A staircase algebra $\mathcal{A}(\lambda)$ with $\lambda \vdash n$ is τ-tilting finite if and only if one of the following holds:

- $\lambda \in\left\{(n),\left(n-k, 1^{k}\right),(n-2,2),\left(2^{2}, 1^{n-4}\right)\right\}$ for $k \leqslant n$.
- $n \leqslant 8$ and $\lambda \notin\left\{(4,3,1),\left(3^{2}, 2\right),\left(3,2^{2}, 1\right),\left(4,2,1^{2}\right)\right\}$.

Question 3.4

We have known that if $\lambda=(n)$ or $\left(n-k, 1^{k}\right)$, the number of support τ-tilting $\mathcal{A}(\lambda)$-modules is

$$
\frac{1}{n+2}\binom{2 n+2}{n+1}
$$

How about others?

References

[1] T. Adachi, Characterizing τ-tilting finite algebras with radical square zero. Proc. Amer. Math. Soc. 144 (2016), no. 11, 4673-4685.
[2] T. Adachi, T. Aihara and A. Chan, Classification of two-term tilting complexes over Brauer graph algebras. Math. Z. 290 (2018), no. 1-2, 1-36.
[3] T. Adachi, O. Iyama and I. Reiten, τ-tilting theory. Compos. Math. 150 (2014), no. 3, 415-452.
[4] T. Aihara and Y. Mizuno, Classifying tilting complexes over preprojective algebras of Dynkin type. Algebra Number Theory 11 (2017), no. 6, 1287-1315.
[5] I. Assem and A. Skowroński, On some classes of simply connected algebras. Proc. London Math. Soc. (3) 56 (1988), no. 3, 417-450.
[6] K. Bongartz, Critical simply connected algebras. Manuscripta Math. 46 (1984), no. 1-3, 117-136.
[7] M. Boos, Staircase algebras and graded nilpotent pairs. J. Pure Appl. Algebra 221 (2017), no. 8, 2032-2052.
[8] F. Eisele, G. Janssens and T. Raedschelders, A reduction theorem for τ-rigid modules. Math. Z. 290 (2018), no. 3-4, 1377-1413.
[9] D. Happel and D. Vossieck, Minimal algebras of infinite representation type with preprojective component. Manuscripta Math., 42 (1983), no. 2-3, 221-243.
[10] P. G. Plamondon, τ-tilting finite gentle algebras are representation-finite. Preprint (2018), arXiv: 1809.06313.
[11] S. Zito, τ-tilting finite tilted and cluster-tilted algebras. Preprint (2019), arXiv: 1902.05866.

Thank you very much for your attention!

