On Schurian finiteness of Schur algebras

 τ -tilting theory

Qi WANG Yau Mathematical Sciences Center

Ph.D.: Osaka University, 2022 Supervisor: Susumu ARIKI Mentor: Yu QIU

Postdoc Workshop B, November 2022

Outline

Introduction

What kind of tools do we use?

Schur algebras

What kind of objects are we applying the tools to ?

au-tilting theory

How do we apply the tool ?

References

References

Introduction

We work with finite-dimensional algebras over an algebraically closed field K. (\mathbb{C} is an algebraically closed field, but \mathbb{R} is not.)

e.g.,

Introduction

•000000000

$$A = \left\{ \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix} \mid a_{ij} \in K \right\}$$

We work with finite-dimensional algebras over an algebraically closed field K. (\mathbb{C} is an algebraically closed field, but \mathbb{R} is not.)

e.g.,

$$A = \left\{ \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix} \mid a_{ij} \in K \right\}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

We work with finite-dimensional algebras over an algebraically closed field K. (\mathbb{C} is an algebraically closed field, but \mathbb{R} is not.)

e.g.,

Introduction

•000000000

We work with finite-dimensional algebras over an algebraically closed field K. (\mathbb{C} is an algebraically closed field, but \mathbb{R} is not.)

 τ -tilting theory

e.g.,

Then, $A \simeq KQ_A$.

Set B = A/I, where I is the ideal

Introduction

000000000

$$\left\{ \begin{bmatrix} 0 & 0 & a_{13} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mid a_{13} \in \mathcal{K} \right\}$$

Set B = A/I, where I is the ideal

$$\left\{ \begin{bmatrix} 0 & 0 & a_{13} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mid a_{13} \in K \right\}$$

 τ -tilting theory

Then, $B \simeq KQ_B/I_B$ with $Q_B = Q_A$ and $I_B = <\alpha\beta>$.

000000000

$$\left\{ \begin{bmatrix} 0 & 0 & a_{13} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mid a_{13} \in K \right\}$$

Then, $B \simeq KQ_B/I_B$ with $Q_B = Q_A$ and $I_B = <\alpha\beta>$.

Quiver Presentation

Any (basic, connected) algebra A over K is isomorphic to a **bound** quiver algebra KQ/I.

 τ -tilting theory

e.g., $\circ \xrightarrow{\alpha} \circ \xrightarrow{\beta} \circ$. A representation:

$$V_1 \xrightarrow{f_{\alpha}} V_2 \xrightarrow{f_{\beta}} V_3$$

e.g., $\circ \xrightarrow{\alpha} \circ \xrightarrow{\beta} \circ$. A representation:

$$V_1 \xrightarrow{f_\alpha} V_2 \xrightarrow{f_\beta} V_3$$

Indecomposable rep's:

$$K \xrightarrow{0} 0 \xrightarrow{0} 0 \qquad K \xrightarrow{1} K \xrightarrow{0} 0$$

$$0 \xrightarrow{0} K \xrightarrow{0} 0 \qquad 0 \xrightarrow{0} K \xrightarrow{1} K$$

$$0 \xrightarrow{0} 0 \xrightarrow{0} K \qquad K \xrightarrow{1} K \xrightarrow{1} K$$

e.g., $\circ \xrightarrow{\alpha} \circ \xrightarrow{\beta} \circ$. A representation:

$$V_1 \xrightarrow{f_{\alpha}} V_2 \xrightarrow{f_{\beta}} V_3$$

Indecomposable rep's with (some) morphisms:

Representation of quivers

Goal of Representation Theory

Classify all indecomposable rep's of a given quiver Q and all morphisms between them, up to isomorphism.

Goal of Representation Theory

Introduction

Classify all indecomposable rep's of a given quiver Q and all morphisms between them, up to isomorphism.

e.g.,
$$\circ \xrightarrow{\alpha} \circ \xrightarrow{\beta} \circ$$
 is done!

Goal of Representation Theory

Introduction

0000000000

Classify all indecomposable rep's of a given quiver Q and all morphisms between them, up to isomorphism.

e.g.,
$$\circ \xrightarrow{\alpha} \circ \xrightarrow{\beta} \circ$$
 is done!

$$K^{2} \xrightarrow{(1,1)} K \xrightarrow{1} K \simeq K \xrightarrow{0} 0 \xrightarrow{0} 0$$

$$K \xrightarrow{1} K \xrightarrow{1} K$$

e.g., $\circ \Longrightarrow \circ$. Indecomposable rep's:

Introduction

0000000000

dimension 2:
$$K \xrightarrow{1 \atop 0} K$$
 $K \xrightarrow{1 \atop \lambda} K$
dimension 3: $K^2 \xrightarrow[(0,1)]{(0,1)} K$ $K \xrightarrow[(0,1)^t]{(1,0)^t} K^2$
dimension 4: $K^2 \xrightarrow[J_2(0)]{(0,1)} K^2$
 \vdots

$$K^{n+1} \xrightarrow{[I_n,O]} K^n \qquad K^n \xrightarrow{I_n} K^n$$

Theorem (Drozd 1977)

Introduction

The representation type of any algebra (over K) is exactly one of finite, tame and wild.

An algebra A is said to be

- finite if the set of indecomposable rep's is finite.
- tame if it is not finite, but all indecomposable rep's are organized in a one-parameter family in each dimension.

Otherwise, A is called wild.

0000000000

 τ -tilting theory

e.g.,
$$\circ \Longrightarrow \circ$$
 . Indecomposable rep's:

dimension 3:
$$K^2 \xrightarrow[(0,1)]{(1,0)} K \quad a = (\lambda, \mu)$$

00000000000

An example of wild algebras

e.g., o o . Indecomposable rep's:

dimension 3:
$$K^2 \xrightarrow[(0,1)]{(1,0)} K \quad a = (\lambda, \mu)$$

Impossible! to give a complete classification of indecomposable rep's for a wild algebra.

An example of wild algebras

e.g., o o . Indecomposable rep's:

dimension 3:
$$K^2 \xrightarrow{(0,1)} K$$
 $a = (\lambda, \mu)$

Impossible! to give a complete classification of indecomposable rep's for a wild algebra.

A natural idea

Introduction

00000000000

To capture some 'finite' properties in wild cases.

0000000000

Schurian finiteness

A representation M of A is said to be **Schurian** if $\operatorname{End}_A(M) \simeq K$.

0000000000

Schurian finiteness

A representation M of A is said to be **Schurian** if $\operatorname{End}_A(M) \simeq K$. Then, A is called

(1) (Chindris-Kinser-Weyman, 2012) **Schur-representation-finite** if there are finitely many Schurian rep's of a fixed dimension.

0000000000

Schurian finiteness

A representation M of A is said to be **Schurian** if $\operatorname{End}_A(M) \simeq K$. Then, A is called

- (1) (Chindris-Kinser-Weyman, 2012) **Schur-representation-finite** if there are finitely many Schurian rep's of a fixed dimension.
- (Demonet-lyama-Jasso, 2016) Schurian-finite if there are finitely many Schurian rep's.

Schurian finiteness

A representation M of A is said to be **Schurian** if $\operatorname{End}_A(M) \simeq K$. Then, A is called

- (1) (Chindris-Kinser-Weyman, 2012) **Schur-representation-finite** if there are finitely many Schurian rep's of a fixed dimension.
- (Demonet-lyama-Jasso, 2016) Schurian-finite if there are finitely many Schurian rep's.
 - $(2) \Rightarrow (1)$ is obvious.

Introduction

0000000000

Schurian finiteness

A representation M of A is said to be **Schurian** if $\operatorname{End}_A(M) \simeq K$. Then, A is called

- (1) (Chindris-Kinser-Weyman, 2012) **Schur-representation-finite** if there are finitely many Schurian rep's of a fixed dimension.
- (2) (Demonet-lyama-Jasso, 2016) **Schurian-finite** if there are finitely many Schurian rep's.
 - $(2) \Rightarrow (1)$ is obvious.

Introduction

• $(1) \Rightarrow (2)$ is not verified; no counterexample.

Wild, but Schurian-finite

e.g., set $\Lambda_n = KQ/I_n$ with

Introduction

000000000

$$Q: \circ \xrightarrow{\alpha} \circ \bigcirc \beta$$
 and $I_n: <\beta^n, \alpha\beta^2>, n\geqslant 2$,

then Λ_n is Schurian-finite.

Wild, but Schurian-finite

e.g., set $\Lambda_n = KQ/I_n$ with

Introduction

000000000

$$Q: \circ \xrightarrow{\alpha} \circ \bigcirc \beta$$
 and $I_n: <\beta^n, \alpha\beta^2>, n\geqslant 2$,

then Λ_n is Schurian-finite.

But the representation type of Λ_n is

- finite if $n \leq 5$:
- tame if n = 6;
- wild if $n \ge 7$.

Schur algebras

In the last fifty years, the representation theory of symmetric groups had a close connection with Lie theory via **categorification**.

Many classes of algebras arise in this process,

In the last fifty years, the representation theory of symmetric groups had a close connection with Lie theory via categorification.

Many classes of algebras arise in this process, whose representation type is completely determined, in particular, for

- (1) Hecke alg. in type ABD;
- (2) Cyclotomic quiver Hecke alg. of level 1 in affine type ACD; of level 2 in affine type A; of level k in affine type A;
- (3) Schur/q-Schur/Borel-Schur/infinitesimal-Schur alg.;
- (4) block alg. of category \mathcal{O} ;

In the last fifty years, the representation theory of symmetric groups had a close connection with Lie theory via categorification.

Many classes of algebras arise in this process, whose representation type is completely determined, in particular, for

- (1) Hecke alg. in type ABD; (Ariki, 2000)
- (2) Cyclotomic quiver Hecke alg. of level 1 in affine type ACD; of level 2 in affine type A; (Ariki-Park 2014, 2015, Ariki 2017); of level k in affine type A; (Ariki-Song-W., writing paper...)
- (3) Schur/g-Schur/Borel-Schur/infinitesimal-Schur alg.; (Erdmann 1993, Doty-Erdmann-Martin 1999, Erdmann-Nakano 2001, etc)
- (4) block alg. of category \mathcal{O} ; (Futorny-Nakano-Pollack 1999, Boe-Nakano 2005, etc)

Now, the Schurian finiteness is determined for

- (1) Schur alg.; (W. 2020, Aoki-W. 2021)
- (2) (most) block alg. of Hecke alg. in type A; (Ariki-Speyer 2021, Lyle-Speyer 2022)

Now, the Schurian finiteness is determined for

- (1) Schur alg.; (W. 2020, Aoki-W. 2021)
- (2) (most) block alg. of Hecke alg. in type A; (Ariki-Speyer 2021, Lyle-Speyer 2022)

In particular, partial results are also obtained for

- (3) q-Schur alg.; (tame cases are deduced from (1))
- (4) Borel-Schur alg.; (only 3 small cases remaining)
- (5) block alg. of Hecke alg. in type B; (Ariki-Speyer-W., working on...)

Schur algebras

- n, r: positive integers;
- \mathbb{F} : algebraically closed field of characteristic p > 0;
- V: vector space over \mathbb{F} with basis $\{v_1, v_2, \dots, v_n\}$;
- G_r : the symmetric group on r symbols;

- n, r: positive integers;
- \mathbb{F} : algebraically closed field of characteristic p > 0;
- V: vector space over \mathbb{F} with basis $\{v_1, v_2, \dots, v_n\}$;
- G_r : the symmetric group on r symbols;

The *r*-fold tensor product $V^{\otimes r}:=V\otimes_{\mathbb{F}}\cdots\otimes_{\mathbb{F}}V$ has a \mathbb{F} -basis

$$\{v_{i_1} \otimes v_{i_2} \otimes \cdots \otimes v_{i_r} \mid 1 \leqslant i_j \leqslant n \text{ for all } 1 \leqslant j \leqslant r\},$$

Schur algebras

- *n*, *r*: positive integers;
- \mathbb{F} : algebraically closed field of characteristic p > 0;
- V: vector space over \mathbb{F} with basis $\{v_1, v_2, \dots, v_n\}$;
- *G_r*: the symmetric group on *r* symbols;

The r-fold tensor product $V^{\otimes r} := V \otimes_{\mathbb{F}} \cdots \otimes_{\mathbb{F}} V$ has a \mathbb{F} -basis

$$\{v_{i_1} \otimes v_{i_2} \otimes \cdots \otimes v_{i_r} \mid 1 \leqslant i_j \leqslant n \text{ for all } 1 \leqslant j \leqslant r\},$$

with a G_r -action on right by

$$(v_{i_1} \otimes v_{i_2} \otimes \cdots \otimes v_{i_r}) \cdot \sigma = v_{i_{\sigma(1)}} \otimes v_{i_{\sigma(2)}} \otimes \cdots \otimes v_{i_{\sigma(r)}},$$

for any $\sigma \in G_r$.

Schur algebras

- *n*, *r*: positive integers;
- \mathbb{F} : algebraically closed field of characteristic p > 0;
- V: vector space over \mathbb{F} with basis $\{v_1, v_2, \dots, v_n\}$;
- G_r : the symmetric group on r symbols;

The r-fold tensor product $V^{\otimes r} := V \otimes_{\mathbb{F}} \cdots \otimes_{\mathbb{F}} V$ has a \mathbb{F} -basis

$$\{v_{i_1} \otimes v_{i_2} \otimes \cdots \otimes v_{i_r} \mid 1 \leqslant i_j \leqslant n \text{ for all } 1 \leqslant j \leqslant r\},$$

with a G_r -action on right by

$$(v_{i_1} \otimes v_{i_2} \otimes \cdots \otimes v_{i_r}) \cdot \sigma = v_{i_{\sigma(1)}} \otimes v_{i_{\sigma(2)}} \otimes \cdots \otimes v_{i_{\sigma(r)}},$$

for any $\sigma \in G_r$. The **Schur algebra**:

$$S(n,r) := \operatorname{End}_{\mathbb{F}G_r}(V^{\otimes r}).$$

Schurian finiteness of Schur algebras

(1) The Schurian finiteness of S(n, r) over p = 2

n r	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
2	F	F	F	Т	F	W	F	W	Т	W	Т	W	W	W	W	W	W	W	W	W	W	• • •

n	1	2	3	4	5	6	7	8	9	10	11	12	13	
3	F	F	F	W	W	W	W	W	W	W	W	W	W	
4	F	F	F	W	W	W	W	W	W	W	W	W	W	
5	F	F	F	W	W	W	W	W	W	W	W	W	W	• • •
6	F	F	F	W	W	W	W	W	W	W	W	W	W	• • •
:				:	:	:	:	:	:	:	:	:	:	

Schurian finiteness of Schur algebras

Blue: Schurian finite Orange: Schurian infinite

(1) The Schurian finiteness of S(n, r) over p = 2

n	<u>r</u> 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
2	F	F	F	Т	F	W	F	W	Т	W	Т	W	W	W	W	W	W	W	W	W	W	

n	1	2	3	4	5	6	7	8	9	10	11	12	13	
3	F	F	F	W	W	W	W	W	W	W	W	W	W	
4	F	F	F	W	W	W	W	W	W	W	W	W	W	
5	F	F	F	W	W	W	W	W	W	W	W	W	W	• • •
6	F	F	F	W	W	W	W	W	W	W	W	W	W	• • •
:				:	:	:	:	:	:	:	:	:	:	

Schurian finiteness of Schur algebras

Blue: Schurian finite Orange: Schurian infinite

(1) The Schurian finiteness of S(n, r) over p = 2

n r	1	2	3	4	5	6	7	8	9	10	11	12	13	
3	F	F	F	W	W	W	W	W	W	W	W	W	W	
4	F	F	F	W	W	W	W	W	W	W	W	W	W	
5	F	F	F	W	W	W	W	W	W	W	W	W	W	
6	F	H	F	W	W	W	W	W	W	W	W	W	W	
:		:		:	:	:	:	:	:	::		:	÷	٠.,

 The representation type of Schur algebras is completely determined by [Erdmann, 1993], [Xi, 1993], [Doty-Nakano, 1998] and [Doty-Erdmann-Martin-Nakano, 1999]. (2) The Schurian finiteness of S(n, r) over p = 3

 τ -tilting theory

(3) The Schurian finiteness of S(n, r) over $p \ge 5$

n r	$1 \sim p-1$	$p \sim 2p-1$	$2p \sim p^2 - 1$	$p^2 \sim p^2 + p - 1$	$p^2 + p \sim \infty$
2	F	F	F	W	W
3	F	F	W	W	W
4	F	F	W	W	W
5	F	F	W	W	W
:	į	:	:	:	:

Sketch of the proof

- (1) Show that if S(n, r) is Schurian infinite, then
 - S(n, n+r) is Schurian infinite, and
 - S(N, r) for any N > n is Schurian infinite.

Thus, reduce the problem to small n and r.

Sketch of the proof

- (1) Show that if S(n,r) is Schurian infinite, then
 - S(n, n + r) is Schurian infinite, and
 - S(N, r) for any N > n is Schurian infinite.

Thus, reduce the problem to small n and r.

(2) Find the quiver presentation of S(n, r) with small n and r, as well as to **check the Schurian finiteness**.

Sketch of the proof

- (1) Show that if S(n, r) is Schurian infinite, then
 - S(n, n + r) is Schurian infinite, and
 - S(N, r) for any N > n is Schurian infinite.

Thus, reduce the problem to small n and r.

- (2) Find the quiver presentation of S(n, r) with small n and r, as well as to check the Schurian finiteness.
- (3) Gradually enlarge n and r, and repeat (2) until finding a complete classification.

Key observations on Schur algebras

(1) S(n,r) = KQ/I is Schurian infinite if Q contains one of the following quivers as a subquiver.

Key observations on Schur algebras

(1) S(n,r) = KQ/I is Schurian infinite if Q contains one of the following quivers as a subquiver.

$$\begin{array}{ccc}
K & \xrightarrow{\lambda} & K \\
\downarrow & & \uparrow 1 \\
K & \longleftarrow & K
\end{array}$$

References

[Adachi-Iyama-Reiten, 2014]

au-tilting theory

Roughly speaking, let

$$T = T_1 \oplus \ldots \oplus T_i \oplus \ldots \oplus T_n$$

be a support τ -tilting module.

Mutation

Roughly speaking, let

$$T = T_1 \oplus \ldots \oplus T_i \oplus \ldots \oplus T_n$$

be a support τ -tilting module. Replace T_j by T_j^* ($\not\simeq T_j$) via certain procedure to get

$$\mu_j(T) = T_1 \oplus \ldots \oplus T_j^* \oplus \ldots \oplus T_n$$

and $\mu_j(T)$ is again a support τ -tilting module.

Mutation

Roughly speaking, let

$$T = T_1 \oplus \ldots \oplus T_j \oplus \ldots \oplus T_n$$

be a support τ -tilting module. Replace T_j by T_j^* ($\not\simeq T_j$) via certain procedure to get

$$\mu_j(T) = T_1 \oplus \ldots \oplus T_j^* \oplus \ldots \oplus T_n$$

and $\mu_j(T)$ is again a support τ -tilting module. Then, $\mu_j(T)$ is called the mutation of T with respect to T_j .

Mutation

Roughly speaking, let

$$T = T_1 \oplus \ldots \oplus T_j \oplus \ldots \oplus T_n$$

be a support τ -tilting module. Replace T_j by T_i^* ($\not\simeq T_j$) via certain procedure to get

$$\mu_j(T) = T_1 \oplus \ldots \oplus T_j^* \oplus \ldots \oplus T_n,$$

and $\mu_i(T)$ is again a support τ -tilting module. Then, $\mu_i(T)$ is called the mutation of T with respect to T_i .

Mutation graph: $\tau \longrightarrow 0$

 τ -tilting theory

• A is τ -tilting finite if the following mutation graph is finite.

 τ -tilting theory

Schurian finiteness $\Leftrightarrow \tau$ -tilting finiteness

• A is τ -tilting finite if the following mutation graph is finite.

τ -tilting finiteness

Schurian finiteness $\Leftrightarrow \tau$ -tilting finiteness

(Schurian rep's
$$\stackrel{1:1}{\longleftrightarrow}$$
 ind. au -rigid modules) [Demonet-Iyama-Jasso, 2018]

• A is τ -tilting finite if the following mutation graph is finite.

Key observations on Schur algebras

 τ -tilting theory

(2) For Schur algebra S(n, r), the mutation graph admits a symmetry. For example,

Key observations on Schur algebras

(2) For Schur algebra S(n, r), the mutation graph admits a symmetry. For example,

References

- [AIR] T. Adachi, O. Iyama and I. Reiten, τ -tilting theory. Compos. Math. 150 (2014), no. 3, 415–452.
- [DIJ] L. Demonet, O. Iyama and G. Jasso, τ -tilting finite algebras, bricks and g-vectors. Int. Math. Res. Not. (2017), no. 00, pp. 1-41
- [DEMN] S.R. Doty, K. Erdmann, S. Martin and D.K. Nakano, Representation type of Schur algebras. *Math. Z.*, **232** (1999), no. 1, 137–182.
- [E] K. Erdmann, Schur algebras of finite type. Quart. J. Math. Oxford Ser. 44 (1993), no. 173, 17–41.

 τ -tilting theory

```
Tools \begin{cases} \mbox{Quiver presentation;} \\ \mbox{Representation type: finite, tame, wild;} \\ \mbox{Schurian finiteness.} \end{cases}
```

```
Objects { Hecke algebras; Schur algebras; KLR algebras.
```

