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Outline

Introduction
What kind of tools do we use ?

Schur algebras
What kind of objects are we applying the tools to ?

T-tilting theory
How do we apply the tool ?
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closed field K. (C is an algebraically closed field, but R is not.)
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We work with finite-dimensional algebras over an algebraically
closed field K. (C is an algebraically closed field, but R is not.)

a1 412 a13
A= 0 dgp ans ‘ ajj € K
0 0 ass

e.g.,

Then, A~ KQa4.
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Set B = A/l, where [ is the ideal

00 ais
00 0 | a3 € K
00 O

Then, B~ KQg/Ig with Qg = Qa and Ig =< aff >.

Quiver Presentation

Any (basic, connected) algebra A over K is isomorphic to a bound
quiver algebra KQ/I.
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Representation of quivers

eg., 0o—>o F.. . A representation:

V1i>V2—ﬁ>V3
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Representation of quivers

eg., o—>o0 o A representation:

fo fs
Vi— Vo ——= V3

Indecomposable rep’s with (some) morphisms:

K—2-0-2.90 K—1-k—2.0
0 0 0 0 0 0
0 0 0 0 1 1
g 0 (l) 0 .k K—1ok—1.k
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Representation of quivers

Goal of Representation Theory

Classify all indecomposable rep’s of a given quiver Q and all
morphisms between them, up to isomorphism.
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Representation of quivers

Goal of Representation Theory

Classify all indecomposable rep’s of a given quiver Q and all
morphisms between them, up to isomorphism.

a B |
e.g., o—>=o0——=o0 is donel

5 (171) KHOHO

lK: )

— > K—>
1

K—tsk—1ik

K
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Representation of quivers

e.g., o —=o. Indecomposable rep’s:

1 1
dimension 2: K—=K K—=K
0 A
(1,0) (1,0)
dimension 3:  K?—=K K —= K?
(0,1) (0,1)¢
12 12
dimension 4: K2 —= K2 K2 —= K?
J>(0) J(N)
[In,0] In
Kn+1 ——= K" K" K"

[O,1n] In(A)
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Representation type of algebras

Theorem (Drozd 1977)

The representation type of any algebra (over K) is exactly one of
finite, tame and wild.

An algebra A is said to be
e finite if the set of indecomposable rep's is finite.

e tame if it is not finite, but all indecomposable rep's are
organized in a one-parameter family in each dimension.

Otherwise, A is called wild.
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An example of wild algebras

~ X\ '
e.g., o ———>o . Indecomposable rep's:
~— 7

(1,0)

——a A\
—_—

dimension 3: K2 K a=(\p)

(0,1)
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An example of wild algebras

X\ 1
e.g., o ———>o . Indecomposable rep's:
~— 7

(1,0)

——a A\
—_—

dimension 3:  K? K a=(\nu)

(0,1)

Impossible! to give a complete classification of indecomposable
rep's for a wild algebra.
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An example of wild algebras

X\ 1
e.g., o ———>o . Indecomposable rep's:
~— 7

(1,0)
——a A\
_—

dimension 3:  K? K a=(\nu)

(0,1)

Impossible! to give a complete classification of indecomposable
rep's for a wild algebra.

A natural idea
To capture some 'finite’ properties in wild cases.
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Schurian finiteness

A representation M of A is said to be Schurian if Enda(M) ~ K.
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Then, A is called

(1) (Chindris-Kinser-Weyman, 2012) Schur-representation-finite if
there are finitely many Schurian rep's of a fixed dimension.
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Schurian finiteness

A representation M of A is said to be Schurian if Enda(M) ~ K.
Then, A is called

(1) (Chindris-Kinser-Weyman, 2012) Schur-representation-finite if
there are finitely many Schurian rep's of a fixed dimension.

(2) (Demonet-lyama-Jasso, 2016) Schurian-finite if there are finitely
many Schurian rep's.

¢ (2) = (1) is obvious.

e (1) = (2) is not verified; no counterexample.
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Wild, but Schurian-finite

e.g., set A\, = KQ/I, with

Q: OLOQB and I, :< B",aB?> >, n>2,

then A, is Schurian-finite.
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Wild, but Schurian-finite

e.g., set A\, = KQ/I, with

Q: OLOQB and I, :< B",aB?> >, n>2,

then A, is Schurian-finite.

But the representation type of A, is
e finite if n < 5;
e tame if n = 6;
e wildif n>7.
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Schur algebras
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had a close connection with Lie theory via categorification.

Many classes of algebras arise in this process,
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(1) Hecke alg. in type ABD;

(2) Cyclotomic quiver Hecke alg. of level 1 in affine type ACD; of
level 2 in affine type A, of level k
in affine type A;

(3) Schur/g-Schur/Borel-Schur/infinitesimal-Schur alg.;

(4) block alg. of category O;
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Background

In the last fifty years, the representation theory of symmetric groups
had a close connection with Lie theory via categorification.

Many classes of algebras arise in this process, whose representation

type is completely determined, in particular, for

(1) Hecke alg. in type ABD; (Ariki, 2000)

(2) Cyclotomic quiver Hecke alg. of level 1 in affine type ACD; of
level 2 in affine type A; (Ariki-Park 2014, 2015, Ariki 2017); of level k
in affine type A; (Ariki-Song-W., writing paper...)

(3) Schur/g-Schur/Borel-Schur/infinitesimal-Schur alg.; (Erdmann
1993, Doty-Erdmann-Martin 1999, Erdmann-Nakano 2001, etc)

(4) block alg. of category O; (Futorny-Nakano-Pollack 1999, Boe-Nakano
2005, etc)
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Background

Now, the Schurian finiteness is determined for
(1) Schur alg.; (w. 2020, Aoki-w. 2021)

(2) (most) block alg. of Hecke alg. in type A; (Ariki-Speyer 2021,
Lyle-Speyer 2022)
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Background

Now, the Schurian finiteness is determined for
(1) Schur alg.; (w. 2020, Aoki-w. 2021)

(2) (most) block alg. of Hecke alg. in type A; (Ariki-Speyer 2021,
Lyle-Speyer 2022)

In particular, partial results are also obtained for

(3) g-Schur alg.; (tame cases are deduced from (1))

(4) Borel-Schur alg.; (only 3 small cases remaining)

(5) block alg. of Hecke alg. in type B; (Ariki-Speyer-W., working on...)
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Schur algebras

n, r: positive integers;

[F: algebraically closed field of characteristic p > 0;

e V: vector space over F with basis {v1,va,...,vp};

G,: the symmetric group on r symbols;
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Schur algebras

n, r: positive integers;

[F: algebraically closed field of characteristic p > 0;

e V: vector space over F with basis {v1,va,...,vp};

G,: the symmetric group on r symbols;

The r-fold tensor product V€' := V ®p - -- @ V has a F-basis
{viovp,®---®@v, |[1<ij<nforall 1 <j<r},
with a G,-action on right by
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for any o € G,.
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Schur algebras

n, r: positive integers;

[F: algebraically closed field of characteristic p > 0;

V': vector space over F with basis {vi, va,...,v,};

G,: the symmetric group on r symbols;

The r-fold tensor product V€' := V ®p - -- @ V has a F-basis
{viovp,®---®@v, |[1<ij<nforall 1 <j<r},
with a G,-action on right by
(Vi ® Vi ® - @ V;,) 0 = Vi) @ V() @ R Vi,
for any o € G,. The Schur algebra:
S(n,r) := Endgg, (V®").
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Schurian finiteness of Schur algebras

(1) The Schurian finiteness of S(n, r) over p =2

nr123456789101112131415161718192021---
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Schurian finiteness of Schur algebras

Blue: Schurian finite Orange: Schurian infinite

(1) The Schurian finiteness of S(n, r) over p =2

21
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Schurian finiteness of Schur algebras

Blue: Schurian finite Orange: Schurian infinite

(1) The Schurian finiteness of S(n, r) over p =2

References
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e The representation type of Schur algebras is completely
determined by [Erdmann, 1993], [Xi, 1993], [Doty-Nakano,
1998] and [Doty-Erdmann-Martin-Nakano, 1999].
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(2) The
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Schurian finiteness of S(n, r) over p =3

(3) The

"t112/3/4|5(6 |7 |8|9|10|11|12]13

gl wWN

Schurian finiteness of S(n, r) over p > 5
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Sketch of the proof

(1) Show that if S(n, r) is Schurian infinite, then
e S(n,n+ r) is Schurian infinite, and
e S(N,r) for any N > nis Schurian infinite.

Thus, reduce the problem to small n and r.
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Thus, reduce the problem to small n and r.

(2) Find the quiver presentation of S(n, r) with small n and r, as
well as to check the Schurian finiteness.
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Sketch of the proof

(1) Show that if S(n, r) is Schurian infinite, then
e S(n,n+ r) is Schurian infinite, and
e S(N,r) for any N > nis Schurian infinite.

Thus, reduce the problem to small n and r.

(2) Find the quiver presentation of S(n, r) with small n and r, as
well as to check the Schurian finiteness.

(3) Gradually enlarge n and r, and repeat (2) until finding a
complete classification.
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Key observations on Schur algebras

(1) S(n,r) = KQ/I is Schurian infinite if Q contains one of the
following quivers as a subquiver.

N
R
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Key observations on Schur algebras

(1) S(n,r) = KQ/I is Schurian infinite if Q contains one of the
following quivers as a subquiver.

A

K—K
o h

K 1 K
1
K-tk K \K<’\—K/
A N
K K
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T-tilting theory

[Adachi-lyama-Reiten, 2014]



Introduction Schur algebras T-tilting theory
0000000000 00000000 @00

Mutation

Roughly speaking, let
T=T1®..0T;¢..0T,

be a support 7-tilting module.

References
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Mutation

Roughly speaking, let
T=T1®..0T;¢..0T,

be a support 7-tilting module. Replace T; by T/ (% Tj) via certain
procedure to get

Mj(T):Tl@...@Tj*@...@T,,,

and p;(T) is again a support 7-tilting module. Then, y;(T) is
called the mutation of T with respect to T;.

/LI(T)‘)...

Mutation graph: 7 :
\ /

pol(T) ==
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T-tilting finiteness

e Ais 7-tilting finite if the following mutation graph is finite.

n(A) e
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T-tilting finiteness

Schurian finiteness < 7-tilting finiteness

e Ais 7-tilting finite if the following mutation graph is finite.

n(A) e
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T-tilting finiteness

Schurian finiteness < 7-tilting finiteness

(Schurian rep's &L ind. 7-rigid modules)

[Demonet-lyama-Jasso, 2018]

e Ais 7-tilting finite if the following mutation graph is finite.

u1(A)4>'“4>'\
A4< —0
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Key observations on Schur algebras

(2) For Schur algebra S(n, r), the mutation graph admits a
symmetry. For example,



Introduction Schur algebras T-tilting theory References
0000000000 00000000 ooe (e]e]

Key observations on Schur algebras

(2) For Schur algebra S(n, r), the mutation graph admits a
symmetry. For example,
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Thank you! Any questions?

Quiver presentation;
Tools < Representation type: finite, tame, wild;

Schurian finiteness.

Hecke algebras;
Objects < Schur algebras;

KLR algebras.
T-tilting finiteness; @ é

How? T-tilting infinite quiver;

ow’?
Mutation and mutation graph;
Symmetry on mutation graph.



