Qi WANG Yau Mathematical Sciences Center Tsinghua University

@Shanghai University, April 10, 2024

Outline

Upper and lower boundary

Introduction

Introduction

 τ -tilting theory

Upper and lower boundary

Application

References

•000000

Introduction

000000

Classify all indecomposable modules of a given algebra $\cal A$ and all morphisms between them, up to isomorphism.

Goal of Algebraic Representation Theory

Classify all indecomposable modules of a given algebra $\cal A$ and all morphisms between them, up to isomorphism.

Quiver Representation Theory

Any (basic, connected) algebra A over an algebraically closed field K is isomorphic to a **bound quiver algebra** KQ/I.

Goal of Algebraic Representation Theory

Classify all indecomposable modules of a given algebra A and all morphisms between them, up to isomorphism.

Quiver Representation Theory

Any (basic, connected) algebra A over an algebraically closed field K is isomorphic to a **bound quiver algebra** KQ/I.

An algebra A is said to be

- rep-finite if the number of indecomposable modules is finite.
- tame if A is not rep-finite, but all indecomposable modules can be organized in a one-parameter family in each dimension.
- wild if there exists a faithful exact K-linear functor from the module category of $K\langle x, y \rangle$ to mod A.

0000000

Rep-finite path algebra

Gabriel's Theorem (Gabriel, 1972)

A path algebra A = KQ is rep-finite if and only if the underlying graph of Q is one of Dynkin graphs:

0000000

Tame and Wild

Tame, e.g., $K(\circ \Longrightarrow \circ)$. Indecomposable modules:

dim 3:
$$K^2 \xrightarrow[(0,1)]{(0,1)^t} K$$
 $K \xrightarrow[(0,1)^t]{(1,0)^t} K^2$

$$K \stackrel{(1,0)^t}{\Longrightarrow} K^2$$

dim 4:
$$K^2 \xrightarrow{J_2(0)} K^2$$
 $K^2 \xrightarrow{(0,1)} K^2 \xrightarrow{J_2(\lambda)} K^2$

$$K^2 \xrightarrow{J_2(\lambda)} K^2$$

0000000

Tame, e.g., $K(\circ \Longrightarrow \circ)$. Indecomposable modules:

dim 3:
$$K^2 \xrightarrow[(0,1)]{(0,1)} K$$
 $K \xrightarrow[(0,1)^t]{(1,0)^t} K^2$

$$K \xrightarrow[(0,1)^t]{t} K^2$$

dim 4:
$$K^2 \xrightarrow{I_2} K^2$$
 $K^2 \xrightarrow{I_2} K^2$

$$\zeta^2 \xrightarrow{J_2(\lambda)} K^2$$

$$K^{n+1} \xrightarrow{[I_n,O]} K^n \xrightarrow{I_n} K^n$$

$$K^n \xrightarrow{J_n(\lambda)} K^n$$

$$K^n \xrightarrow{I_n} K^r$$

0000000

Tame and Wild

Upper and lower boundary

Tame, e.g., $K(\circ \Longrightarrow \circ)$. Indecomposable modules:

dim 3:
$$K^2 \xrightarrow[(0,1)]{(0,1)} K$$
 $K \xrightarrow[(0,1)^t]{(1,0)^t} K^2$

$$K \stackrel{(1,0)^t}{\Longrightarrow} K^2$$

$$\lim 4$$
: $K^2 =$

dim 4:
$$K^2 \xrightarrow{l_2} K^2$$
 $K^2 \xrightarrow{l_2} K^2$

$$K^{n+1} \xrightarrow{[I_n,O]} K^n \qquad K^n \xrightarrow{I_n} K^n$$

Wild, e.g., $K(\circ)$ 0). Indecomposable modules:

dim 3:
$$K^2 \xrightarrow{\stackrel{(1,0)}{z}} K \quad z = (\lambda, \mu)$$

Trichotomy Theorem (Drozd, 1977)

The representation type of an algebra A (over K) is exactly one of rep-finite, tame and wild.

0000000

The representation type of an algebra A (over K) is exactly one of rep-finite, tame and wild.

It leads to two directions:

- Studying mod A in-depth, such as Auslander-Reiten theory, homological dimensions, triangulated categories, etc, for rep-finite and tame algebras;
- (2) Studying nice subcategories of mod A, such as Serre subcategories, wide subcategories, etc, for wild algebras.

0000000

The representation type of an algebra A (over K) is exactly one of rep-finite, tame and wild.

It leads to two directions:

- Studying mod A in-depth, such as Auslander-Reiten theory, homological dimensions, triangulated categories, etc, for rep-finite and tame algebras;
- (2) Studying nice subcategories of mod A, such as Serre subcategories, wide subcategories, etc, for wild algebras.

Aim of this talk

To capture some finite property in wild cases.

Brick finiteness of algebras

A module M is called a **brick** if $\operatorname{End}_A(M) \simeq K$.

Then, A is said to be

- (1) (Chindris-Kinser-Weyman, 2012) **Schur-representation-finite** if there are finitely many bricks of a fixed dimension.
- (2) (Demonet-Iyama-Jasso, 2016) **brick-finite** if there are finitely many bricks in the module category of *A*.

Brick finiteness of algebras

A module M is called a **brick** if $End_A(M) \simeq K$.

Then, A is said to be

- (1) (Chindris-Kinser-Weyman, 2012) **Schur-representation-finite** if there are finitely many bricks of a fixed dimension.
- (2) (Demonet-Iyama-Jasso, 2016) **brick-finite** if there are finitely many bricks in the module category of *A*.
 - $(2) \Rightarrow (1)$ is obvious.
 - $(1) \Rightarrow (2)$ is not verified; no counterexample.

Wild, but brick-finite

Set $\Lambda_n = KQ/I_n$ with

$$Q: 1 \xrightarrow{\alpha} 2 \bigcirc \beta$$
 and $I_n: \langle \beta^n, \alpha \beta^2 \rangle$, $n \geqslant 2$,

the representation type of Λ_n is

- rep-finite if $n \leq 5$;
- tame if n = 6;
- wild if n ≥ 7.

But, Λ_n admits only 4 bricks for any $n \ge 2$.

au-tilting theory

 τ -tilting theory was introduced by Adachi, Iyama and Reiten in 2014, as a completion to the classical tilting theory.

So far, τ -tilting theory is related to several different aspects in Representation Theory of Algebras:

- Categorical objects, such as torsion classes, silting complexes;
- Combinatorial objects, such as bricks, semibricks;
- Lattice theory, such as the lattice of torsion classes:
- Geometric objects, such as the modern Brauer-Thrall conjecture, wall-and-chamber structures.

Auslander-Reiten translation

Nakayama functor $\nu = D(-)^*$: proj $A o \operatorname{inj} A$

- $D(-) = \operatorname{Hom}_{K}(-, K) : \operatorname{mod} A \longleftrightarrow \operatorname{mod} A^{\operatorname{op}}$
- $(-)^* = \operatorname{Hom}_A(-, A)$: proj $A \longleftrightarrow \operatorname{proj} A^{\operatorname{op}}$

Let M be an A-module with a minimal projective presentation

$$P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \longrightarrow 0$$
,

the **Auslander-Reiten translation** τM is defined by the following exact sequence

$$0 \longrightarrow \tau M \longrightarrow \nu P_1 \xrightarrow{\nu f_1} \nu P_0,$$

that is, $\tau M = \ker \nu f_1$.

Definition 2.1 (Adachi-Iyama-Reiten, 2014)

Let M be a right A-module. Then,

- (1) M is called τ -rigid if $Hom_A(M, \tau M) = 0$.
- (2) M is called τ -tilting if M is τ -rigid and |M| = |A|.
- M is called support τ -tilting if M is a τ -tilting (A/AeA)-module for an idempotent e of A.

Definition 2.1 (Adachi-Iyama-Reiten, 2014)

Let M be a right A-module. Then,

- (1) M is called τ -rigid if $Hom_A(M, \tau M) = 0$.
- (2) M is called τ -tilting if M is τ -rigid and |M| = |A|.
- M is called support τ -tilting if M is a τ -tilting (A/AeA)-module for an idempotent e of A.
- (3') Set P := eA, (M, P) is called a support τ -tilting pair.

Definition 2.1 (Adachi-Iyama-Reiten, 2014)

Let M be a right A-module. Then,

- (1) M is called τ -rigid if $Hom_{\Delta}(M, \tau M) = 0$.
- (2) M is called τ -tilting if M is τ -rigid and |M| = |A|.
- (3) M is called support τ -tilting if M is a τ -tilting (A/AeA)-module for an idempotent e of A.
- (3') Set P := eA, (M, P) is called a support τ -tilting pair.

We define the sets i τ -rigid A, τ -tilt A, s τ -tilt A, respectively. Then, $i\tau$ -rigid $A \subseteq \tau$ -tilt $A \subseteq s\tau$ -tilt A

Mutation

Reminder: $M_1 \oplus \cdots \oplus M_j \oplus \cdots \oplus M_n \Rightarrow M_1 \oplus \cdots \oplus M_i^* \oplus \cdots \oplus M_n$.

- add(M): the full subcategory whose objects are direct summands of finite direct sums of copies of M;
- Fac(M): the full subcategory whose objects are factor modules of finite direct sums of copies of M.

Definition 2.2 (AIR, 2014)

Let $M=M_1\oplus\cdots\oplus M_j\oplus\cdots\oplus M_n$ with $M_j\notin \operatorname{Fac}(M/M_j)$. Take a minimal left $\operatorname{add}(M/M_j)$ -approximation π with an exact sequence

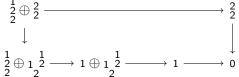
$$M_j \stackrel{\pi}{\longrightarrow} Z \longrightarrow \operatorname{coker} \pi \longrightarrow 0.$$

We call $\mu_j^-(M) := \operatorname{coker} \pi \oplus (M/M_j)$ the left mutation of M with respect to M_j , which is again a support τ -tilting A-module.

Mutation Graph

We draw an arrow $M o \mu_j^-(M)$, it gives a graph $\mathcal{H}(\mathsf{s} au ext{-tilt}\,A)$.

For example, $\mathcal{H}(s\tau\text{-tilt }\Lambda_2)$ is displayed as



ر . We draw an arrow $M \to \mu_i^-(M)$, it gives a graph $\mathcal{H}(s\tau\text{-tilt }A)$.

For example, $\mathcal{H}(s\tau\text{-tilt }\Lambda_2)$ is displayed as

Proposition 2.3 (AIR, 2014)

If the mutation graph $\mathcal{H}(s\tau\text{-tilt }A)$ contains a finite connected component Δ , then $\mathcal{H}(s\tau\text{-tilt }A)=\Delta$.

Application

brick A: the set of bricks in mod A

Introduction

 fbrick A: the set of bricks M such that the smallest torsion class T(M) containing M is functorially finite.

Connection with brick finiteness

- brick A: the set of bricks in mod A
- fbrick A: the set of bricks M such that the smallest torsion class T(M) containing M is functorially finite.

Theorem 2.4 (Demonet-Iyama-Jasso, 2016)

There exists a bijection between $i\tau$ -rigid A and fbrick A given by

$$X \mapsto X/\operatorname{rad}_B(X)$$
,

where $B := \operatorname{End}_A(X)$. If $i\tau$ -rigid A is finite, brick $A = \operatorname{fbrick} A$.

Connection with brick finiteness

- brick A: the set of bricks in mod A
- fbrick A: the set of bricks M such that the smallest torsion class T(M) containing M is functorially finite.

Theorem 2.4 (Demonet-Iyama-Jasso, 2016)

There exists a bijection between $i\tau$ -rigid A and fbrick A given by

$$X \mapsto X/\operatorname{rad}_B(X)$$
,

where $B := \operatorname{End}_A(X)$. If $i\tau$ -rigid A is finite, brick $A = \operatorname{fbrick} A$.

e.g.,

i
$$au$$
-rigid Λ_2 $\begin{vmatrix} 1 & 2 & 2 & 1 \\ 2 & 2 & 2 & 1 \end{vmatrix}$ 1
brick Λ_2 $\begin{vmatrix} 1 & 2 & 2 & 1 \\ 2 & 2 & 2 & 1 \end{vmatrix}$ 1

Known Result

The brick finiteness is known, for example, for

- preprojective algebras of Dynkin type (Mizuno, 2014);
- algebras with radical square zero (Adachi, 2016);
- cycle-finite algebras (Malicki-Skowroński, 2016);
- Brauer graph algebras (Adachi-Aihara-Chan, 2018);
- gentle algebras (Plamondon, 2018);
- (special) biserial algebras (Mousavand, 2019; Schroll-Treffinger-Valdivieso, 2021);
- cluster-tilted algebras (Zito, 2019);
- minimal wild two-point algebras (W., 2019).
- tensor product algebras (Miyamoto-W., 2019);
- quasi-tilted algebras, locally hereditary algebras, etc., (Aihara-Honma-Miyamoto-W., 2020).

Proposition 2.5 (Demonet-Iyama-Jasso, 2016)

If A is brick-finite, then

- (1) A/I is brick-finite, for any two-sided ideal I of A.
- (2) *eAe* is brick-finite, for any idempotent *e* of *A*.

Reduction Theorem

Upper and lower boundary

Proposition 2.5 (Demonet-Iyama-Jasso, 2016)

If A is brick-finite, then

- (1) A/I is brick-finite, for any two-sided ideal I of A.
- (2) eAe is brick-finite, for any idempotent e of A.

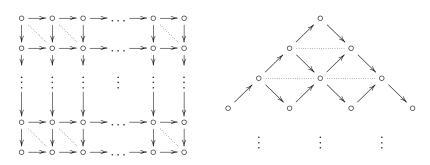
Proposition 2.6 (Eisele-Janssens-Raedschelders, 2018)

Let I be a two-sided ideal generated by central elements which are contained in the radical of A. Then, there exists a poset isomorphism between $s\tau$ -tilt A and $s\tau$ -tilt (A/I).

Upper and lower boundary

Upper boundary

Let A be an algebra without loops and oriented cycles. We want to see what happens if A has lots of vertices. For example,



This motivates us to consider simply connected algebras.

Let A = KQ/I without loops and oriented cycles. We consider the fundamental group $\Pi_1(Q, I)$ of A. Then, A is said to be a simply connected algebra if, for every bound quiver presentation KQ/Iof A, $\Pi_1(Q, I)$ is trivial. (Assem-Skowroński, 1988)

We have the following examples.

- (1) All tree algebras are simply connected.
- (2) A path algebra KQ is simply connected if and only if Q is a tree. For example, KQ is not simply connected if

$$Q = \bigvee_{0 \longrightarrow 0}^{0 \longrightarrow 0} \bigvee_{0 \longrightarrow 0}^{0}.$$

Theorem 3.1 (W., 2019)

Introduction

Let A be a simply connected algebra. Then,

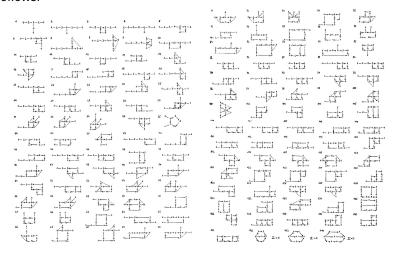
A is brick-finite \Leftrightarrow A is rep-finite.

Let A be a simply connected algebra. Then,

A is brick-finite \Leftrightarrow A is rep-finite.

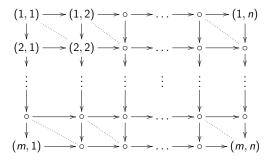
Sketch of the proof:

- A: rep-finite ⇒ τ-tilting finite, obvious;
- A: rep-infinite
 - \Rightarrow there exists an idempotent e of A such that eAe is one of concealed algebras of type $\widetilde{\mathbb{D}}_n$, $\widetilde{\mathbb{E}}_6$, $\widetilde{\mathbb{E}}_7$, $\widetilde{\mathbb{E}}_8$ (Bongartz, 1984);
 - \Rightarrow *eAe* is brick-infinite;
 - \Rightarrow A is brick-infinite (Proposition 2.4).



Rectangle Quiver

Let $B_{m,n}$ $(m \le n)$ be the algebra given by the following quiver with all possible commutativity relations:



Then, $B_{m,n}$ is brick-finite if and only if

$$(m, n) \in \{(1, n), (2, 2), (2, 3), (2, 4)\}.$$

Introduction

Lower boundary

A local algebra is always brick-finite, whose quiver is given as

$$\bigcirc \circ$$
, $\bigcirc \circ \bigcirc$, $\bigcirc \circ \bigcirc$, \cdots

Lower boundary

00000000000

Upper and lower boundary

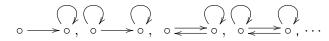
A local algebra is always brick-finite, whose quiver is given as

$$\bigcirc \circ, \bigcirc \circ \bigcirc \ , \bigcirc \bigcirc \bigcirc \ , \cdots$$

This forces us to focus on A = KQ/I with only two vertices:

$$\circ \Longrightarrow \circ , \circ \Longrightarrow \circ , \bigcirc \circ \Longrightarrow \circ , \cdots$$

or



Proposition 3.2

The Kronecker algebra $K(1 \Longrightarrow 2)$ is brick-infinite.

<u>Proof:</u> It is well-known that $K \xrightarrow{\lambda} K$ is a brick, for any $\lambda \in K$.

Two-point algebra

Proposition 3.2

The Kronecker algebra $K(1 \Longrightarrow 2)$ is brick-infinite.

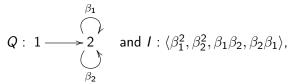
<u>Proof:</u> It is well-known that $K \xrightarrow{\lambda} K$ is a brick, for any $\lambda \in K$.

We only need to consider

$$Q(m,n) := \underbrace{1}_{\alpha_m} \underbrace{1}_{\mu} \underbrace{2}_{\beta_n}$$

Theorem 3.3 (W., 2022)

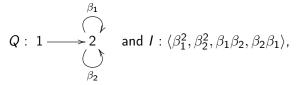
Let A = KQ(m, n)/I be a monomail algebra with rad³ A = 0. Then, A is brick-finite if and only if it does not have $\Delta = KQ/I$:



or its opposite algebra as a quotient algebra.

Theorem 3.3 (W., 2022)

Let A = KQ(m, n)/I be a monomail algebra with rad³ A = 0. Then, A is brick-finite if and only if it does not have $\Delta = KQ/I$:



or its opposite algebra as a quotient algebra.

Sketch of the proof:

- (1) $s\tau$ -tilt $A \simeq s\tau$ -tilt (A/J), $J \subseteq rad A \cap Z(A)$;
- (2) Δ is brick-infinite, using silting theory.

00000000000

Upper and lower boundary

Proposition 3.4 (AIR, 2014)

There exists a poset isomorphism between $s\tau$ -tilt A and 2-silt A, the bijection \mathcal{F} is given by

$$M \longmapsto (P_1 \oplus P \xrightarrow{\binom{f}{0}} P_0)$$
,

where (M, P) is the support τ -tilting pair corresponding to M and $P_1 \xrightarrow{f} P_0 \to M \to 0$ is the minimal projective presentation of M.

00000000000

Upper and lower boundary

Proposition 3.4 (AIR, 2014)

There exists a poset isomorphism between $s\tau$ -tilt A and 2-silt A, the bijection \mathcal{F} is given by

$$M \longmapsto (P_1 \oplus P \xrightarrow{\binom{f}{0}} P_0)$$
,

where (M, P) is the support τ -tilting pair corresponding to M and $P_1 \xrightarrow{f} P_0 \to M \to 0$ is the minimal projective presentation of M.

A mutation chain: $M^{(1)} \rightarrow M^{(2)} \rightarrow \cdots \rightarrow M^{(k)} \rightarrow \cdots$ $\mathcal{F}(M^{(1)}) \longrightarrow \mathcal{F}(M^{(2)}) \longrightarrow \cdots \longrightarrow \mathcal{F}(M^{(2k-1)}) \longrightarrow \mathcal{F}(M^{(2k)}) \longrightarrow \cdots$ End

Proposition 3.4 (W., 2022)

Let A = KQ(1,1)/I be a monomail algebra with rad⁵ A = 0. Then. A is brick-finite if and only if it does not have one of

- $\circ \xrightarrow{\mu} \circ \bigcap \beta$ with $\beta^4 = 0$,
- $\circ \xrightarrow{\mu} \circ \bigcirc \beta$ with $\beta^3 = \beta \nu = \nu \mu \nu = \nu \mu \beta^2 = 0$,
- $\alpha \bigcirc \circ \xrightarrow{\mu} \circ \bigcirc \beta$ with $\alpha^2 = \beta^2 = 0$,

and their opposite algebras as a quotient algebra.

Introduction

Application

Derived Equivalence Class

• A is derived equivalent to $B \Leftrightarrow D^{\mathrm{b}}(\mathsf{mod}\,A) \simeq D^{\mathrm{b}}(\mathsf{mod}\,B)$

Theorem 4.1 (Ariki-Song-W., 2024)

Let A_1, A_2, \ldots, A_s be pairwise derived equivalent symmetric algebras. Suppose the following conditions hold.

- (1) A_i is brick-finite, for all 1 < i < s.
- (2) End $(\mu_k^-(A_i)) \in \{A_1, A_2, \dots, A_s\}$, for any k and all $1 \le i \le s$.

Then, any algebra B which has derived equivalence

$$\mathsf{D}^\mathrm{b}(\mathsf{mod}\,B)\cong\mathsf{D}^\mathrm{b}(\mathsf{mod}\,A_1)$$

is included in $\{A_1, A_2, \ldots, A_5\}$.

Derived Equivalence Class

We consider the following quiver:

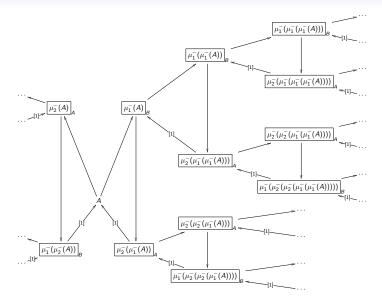
$$Q: \alpha \bigcirc \circ \xrightarrow{\mu} \circ \bigcirc \beta$$
,

and define

- $A := KQ/\langle \alpha^2, \beta^2 \nu \mu, \alpha \mu \mu \beta, \beta \nu \nu \alpha \rangle$.
- $B := KQ/\langle \alpha^2 \mu\nu, \beta^2 \nu\mu, \alpha\mu \mu\beta, \beta\nu \nu\alpha, \mu\nu\mu, \nu\mu\nu \rangle$.

Proposition 4.2

If C is derived equivalent to A, then C is isomorphic to A or B.



References

- [AIR14] T. Adachi, O. Iyama and I. Reiten, τ -tilting theory. Compos. Math. 150 (2014), no. 3, 415–452.
- [Al12] T. Aihara and O. Iyama, Silting mutation in triangulated categories. J. Lond. Math. Soc. (2) 85 (2012), no. 3, 633-668.
- [DIJ17] L. Demonet, O. Iyama and G. Jasso, τ -tilting finite algebras, bricks and g-vectors. Int. Math. Res. Not. (2017), no. 00, pp. 1–41.
- [EJR18] F. Eisele, G. Janssens and T. Raedschelders, A reduction theorem for τ -rigid modules. *Math. Z.* **290** (2018), no. 3-4, 1377-1413.

Thank you! Any questions?

```
\begin{cases} \text{Quiver representation theory;} \\ \text{Representation type: rep-finite, tame, wild;} \\ \text{Brick finiteness of algebras;} \\ \tau\text{-tilting theory;} \end{cases}
```

Simply connected algebras;
Two-point algebras;
Silting theory;
Derived equivalence class.