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Goal of Algebraic Representation Theory

Classify all indecomposable modules of a given algebra A and all
morphisms between them, up to isomorphism.
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Classify all indecomposable modules of a given algebra A and all
morphisms between them, up to isomorphism.

Quiver Representation Theory

Any (basic, connected) algebra A over an algebraically closed field
K is isomorphic to a bound quiver algebra KQ/I.
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Goal of Algebraic Representation Theory

Classify all indecomposable modules of a given algebra A and all
morphisms between them, up to isomorphism.

Quiver Representation Theory
Any (basic, connected) algebra A over an algebraically closed field
K is isomorphic to a bound quiver algebra KQ/I.

An algebra A is said to be
e rep-finite if the number of indecomposable modules is finite.
e tame if A is not rep-finite, but all indecomposable modules
can be organized in a one-parameter family in each dimension.
e wild if there exists a faithful exact K-linear functor from the
module category of K(x,y) to mod A.
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Gabriel's Theorem (Gabriel, 1972)

A path algebra A = KQ is rep-finite if and only if the underlying
graph of Q is one of Dynkin graphs:

A,

E7 :

Eg :

7-tilting theory
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Tame and Wild

Tame, e.g., K( o —= o). Indecomposable modules:

(1,0) (1,0)t
dim 3: K2 —= K —= K?
(0,1) (0,1)t
} )}
dim 4 K2 —=K?2 K2 —= K2

J2(0) J(N)
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Tame and Wild

Tame, e.g., K( o —= o). Indecomposable modules:

(1,0) (1,0)t

dim 3: K2 —= K —= K?
(0,1) (0,1)t
; ;

dim 4 K2 —=K?2 K2 —= K2
J2(0) J(N)
[/, 0]
Kn+1 — K" Kn Kn

[0,1n] Jn(X)
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Tame and Wild

Tame, e.g., K( o —= o). Indecomposable modules:

(1,0) (1,0)
dim 3: K2 —= K —= K?
(0,1) (0,1)t
} !
dim 4 K2—=K?2 K2 —= K2
J2(0) J2(A)
[1n,0] '
Kn+1 — K" Kn Kn
[0,11] Jn(N)

Wild, e.g., K( o - = ). Indecomposable modules:
~~— 7

(1,0)
— 7>

dim3: K2

K z=(\p)
(0,1)
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Trichotomy Theorem (Drozd, 1977)

The representation type of an algebra A (over K) is exactly one of
rep-finite, tame and wild.
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Trichotomy Theorem (Drozd, 1977)

The representation type of an algebra A (over K) is exactly one of
rep-finite, tame and wild.

It leads to two directions:

(1) Studying mod A in-depth, such as Auslander-Reiten theory,
homological dimensions, triangulated categories, etc, for
rep-finite and tame algebras;

(2) Studying nice subcategories of mod A, such as Serre
subcategories, wide subcategories, etc, for wild algebras.
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Trichotomy Theorem (Drozd, 1977)

The representation type of an algebra A (over K) is exactly one of
rep-finite, tame and wild.

It leads to two directions:

(1) Studying mod A in-depth, such as Auslander-Reiten theory,
homological dimensions, triangulated categories, etc, for
rep-finite and tame algebras;

(2) Studying nice subcategories of mod A, such as Serre
subcategories, wide subcategories, etc, for wild algebras.

Aim of this talk
To capture some finite property in wild cases.
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Brick finiteness of algebras

A module M is called a brick if Enda(M) ~ K.

Then, A is said to be

(1) (Chindris-Kinser-Weyman, 2012) Schur-representation-finite if
there are finitely many bricks of a fixed dimension.

(2) (Demonet-lyama-Jasso, 2016) brick-finite if there are finitely many
bricks in the module category of A.



Introduction T-tilting theory Upper and lower boundary Application
0000000 000000000 0000

References

Brick finiteness of algebras

A module M is called a brick if Enda(M) ~ K.

Then, A is said to be

(1) (Chindris-Kinser-Weyman, 2012) Schur-representation-finite if
there are finitely many bricks of a fixed dimension.

(2) (Demonet-lyama-Jasso, 2016) brick-finite if there are finitely many
bricks in the module category of A.

® (2) = (1) is obvious.

® (1) = (2) is not verified; no counterexample.
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Set A\, = KQ/ I, with

Q: 1#235 and I, : (8", aB2), n > 2,
the representation type of A, is
e rep-finite if n < 5;
® tame if n = 6;
o wildif n>7.
But, A, admits only 4 bricks for any n > 2.
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T-tilting theory
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7-tilting theory was introduced by Adachi, lyama and Reiten in
2014, as a completion to the classical tilting theory.

So far, 7-tilting theory is related to several different aspects in
Representation Theory of Algebras:

e Categorical objects, such as torsion classes, silting complexes;
e Combinatorial objects, such as bricks, semibricks;

e | attice theory, such as the lattice of torsion classes;

Geometric objects, such as the modern Brauer-Thrall
conjecture, wall-and-chamber structures.
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Auslander-Reiten translation

Nakayama functor v = D(—)* : proj A — inj A
¢ D(—) = Homg(—, K) : mod A <— mod A°P
® (—)* =Homa(—,A) : proj A <— proj A°P

Let M be an A-module with a minimal projective presentation
fi fo
P — Py — M — 0,

the Auslander-Reiten translation 7M is defined by the following
exact sequence

00— ™™ — vP; V—le/Po,

that is, TM = ker vf;.
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Definition 2.1 (Adachi-lyama-Reiten, 2014)

Let M be a right A-module. Then,

(1) M is called 7-rigid if Homa(M, M) = 0.

(2) M is called 7-tilting if M is 7-rigid and |M| = |A|.

(3) M is called support 7-tilting if M is a 7-tilting
(A/AeA)-module for an idempotent e of A.
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Definition 2.1 (Adachi-lyama-Reiten, 2014)

Let M be a right A-module. Then,

(1) M is called 7-rigid if Homa(M, M) = 0.

(2) M is called 7-tilting if M is 7-rigid and |M| = |A|.

(3) M is called support 7-tilting if M is a 7-tilting
(A/AeA)-module for an idempotent e of A.

(3") Set P:=eA, (M, P) is called a support 7-tilting pair.
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Definition 2.1 (Adachi-lyama-Reiten, 2014)

Let M be a right A-module. Then,

(1) M is called 7-rigid if Homa(M, M) = 0.

(2) M is called 7-tilting if M is 7-rigid and |M| = |A|.

(3) M is called support 7-tilting if M is a 7-tilting
(A/AeA)-module for an idempotent e of A.

(3") Set P:=eA, (M, P) is called a support 7-tilting pair.

References

We define the sets iT-rigid A, 7-tilt A, s7-tilt A, respectively. Then,

iT-rigid A C 7-tilt A C s7-tilt A
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Mutation
Reminder: M1®--~EBI\/IJ-EB---QBM,,:>Ml@---@Mf@...@/\/]n_

¢ add(M): the full subcategory whose objects are direct
summands of finite direct sums of copies of M;

® Fac(M): the full subcategory whose objects are factor modules
of finite direct sums of copies of M.

Definition 2.2 (AIR, 2014)
let M=M @--- &M@ --- & M, with M; ¢ Fac(M/M;). Take a
minimal left add(M/M,;)-approximation 7 with an exact sequence

I\/IJ-L>Z—>coker7r—>0.

We call yi; (M) := coker m & (M/Mj) the left mutation of M with
respect to M;, which is again a support 7-tilting A-module.
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Mutation Graph

We draw an arrow M — 11 (M), it gives a graph H(s7-tilt A).

For example, H(s7-tilt A2) is displayed as

NN

@3
|

O —— NN

1 1 1
212— 112 1
2 2 2
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Mutation Graph

We draw an arrow M — ;7 (M), it gives a graph H(st-tilt A).

For example, H(s7-tilt A2) is displayed as

NN

@3
|

O —— NN

[uy

1 1 1
212— 1B 12
272 2

Proposition 2.3 (AIR, 2014)

If the mutation graph H(s7-tilt A) contains a finite connected
component A, then H(s7-tilt A) = A.
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Connection with brick finiteness

® brick A: the set of bricks in mod A

o fbrick A: the set of bricks M such that the smallest torsion
class T(M) containing M is functorially finite.
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Connection with brick finiteness

® brick A: the set of bricks in mod A

o fbrick A: the set of bricks M such that the smallest torsion
class T(M) containing M is functorially finite.

Theorem 2.4 (Demonet-lyama-Jasso, 2016)
There exists a bijection between iT-rigid A and fbrick A given by

X v X /radg(X),

where B := Enda(X). If iT-rigid A is finite, brick A = fbrick A.
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Connection with brick finiteness

® brick A: the set of bricks in mod A

e fbrick A: the set of bricks M such that the smallest torsion
class T(M) containing M is functorially finite.

Theorem 2.4 (Demonet-lyama-Jasso, 2016)
There exists a bijection between iT-rigid A and fbrick A given by

X v X /radg(X),

where B := Enda(X). If iT-rigid A is finite, brick A = fbrick A.

e.g.,

1

2
2 12 1
5 2

iT-rigid Ay

brick Ay

} oo 1
5 2
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Known Result

The brick finiteness is known, for example, for

® preprojective algebras of Dynkin type (Mizuno, 2014);

algebras with radical square zero (Adachi, 2016);

e cycle-finite algebras (Malicki-Skowroniski, 2016);

® Brauer graph algebras (Adachi-Aihara-Chan, 2018);
e gentle algebras (Plamondon, 2018);

¢ (special) biserial algebras (Mousavand, 2019;
Schroll-Treffinger-Valdivieso, 2021);

o cluster-tilted algebras (Zito, 2019);
¢ minimal wild two-point algebras (W., 2019).
e tensor product algebras (Miyamoto-W., 2019);

® quasi-tilted algebras, locally hereditary algebras, etc.,
(Aihara-Honma-Miyamoto-W., 2020).



Introduction T-tilting theory Upper and lower boundary Application References
0000000 00000000e 00000000000 0000 (e]e)

Reduction Theorem

Proposition 2.5 (Demonet-lyama-Jasso, 2016)

If Ais brick-finite, then

(1) A/l is brick-finite, for any two-sided ideal / of A.
(2) eAe is brick-finite, for any idempotent e of A.
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Reduction Theorem

Proposition 2.5 (Demonet-lyama-Jasso, 2016)

If Ais brick-finite, then

(1) A/l is brick-finite, for any two-sided ideal / of A.
(2) eAe is brick-finite, for any idempotent e of A.

Proposition 2.6 (Eisele-Janssens-Raedschelders, 2018)

Let / be a two-sided ideal generated by central elements which are
contained in the radical of A. Then, there exists a poset
isomorphism between s7-tilt A and s7-tilt (A/]).
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Upper boundary

Let A be an algebra without loops and oriented cycles. We want to
see what happens if A has lots of vertices. For example,

0O—>0—>0—>,..,—>0—>0

RS ey

IR SN\
B A YA Y AN

O<— 0 <—
O<— 0 <—
O<—O0O=<—-"'::
O=<—0=<—
O=<—0=<—

|
}

This motivates us to consider simply connected algebras.
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Simply connected algebra

Let A= KQ/I without loops and oriented cycles. We consider the
fundamental group M1(Q, /) of A. Then, A is said to be a simply
connected algebra if, for every bound quiver presentation KQ//

of A, M1(Q, 1) is trivial. (Assem-Skowroriski, 1988)

We have the following examples.
(1) All tree algebras are simply connected.

(2) A path algebra KQ is simply connected if and only if Q is a
tree. For example, KQ is not simply connected if

O ——>0

e=| |

O ——>0
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Theorem 3.1 (W., 2019)
Let A be a simply connected algebra. Then,

A is brick-finite & A is rep-finite.

References
(e]e)
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Theorem 3.1 (W., 2019)
Let A be a simply connected algebra. Then,

A is brick-finite & A is rep-finite.

Sketch of the proof:

e A: rep-finite = 7-tilting finite, obvious;
® A: rep-infinite

= there exists an idempotent e of A such that eAe is one of
concealed algebras of type D, Eg, E7, Eg (Bongartz, 1984);

= eAe is brick-infinite;

= A is brick-infinite (Proposition 2.4).
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T-tilting theory
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4 ey

A complete list of concealed algebras of type Eg,

follows.
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Rectangle Quiver

Let B, n (m < n) be the algebra given by the following quiver with
all possible commutativity relations:

(Lil)‘ﬁ(llz)”ﬁzﬁ.“HI?(T)
P
T N
(mi,nﬁiﬁiﬂ...ﬁié’(m%m

Then, B, 5 is brick-finite if and only if

(m,n) € {(1,n),(2,2),(2,3),(2,4)}.
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Lower boundary

A local algebra is always brick-finite, whose quiver is given as

Co.CoD) ,CQQ
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Lower boundary

A local algebra is always brick-finite, whose quiver is given as
Ceor e Cod)

This forces us to focus on A= KQ/I with only two vertices:

-
-
—_— —_—
OHO7O< O’CO =0,
> -~

or

00O O 00 O

0O——>0, 0O—>0, 0——>0, 0O——=>0,

References
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Two-point algebra

Proposition 3.2
The Kronecker algebra K( 1 —=2) is brick-infinite.

A
Proof: It is well-known that K —= K is a brick, for any \ € K.
1
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Two-point algebra

Proposition 3.2
The Kronecker algebra K( 1 —=2) is brick-infinite.

A
Proof: It is well-known that K ——= K is a brick, for any \ € K.
1

We only need to consider



Introduction 7-tilting theory Upper and lower boundary Application References
0000000 000000000 00000000800 0000

Theorem 3.3 (W., 2022)

Let A= KQ(m,n)/I be a monomail algebra with rad®> A = 0.
Then, A is brick-finite if and only if it does not have A = KQ/I:
B1

ﬂ
Q: 1*>2 and / . </8]2_3B§7ﬁlﬁ27ﬁ2ﬁl>y
O

B2
or its opposite algebra as a quotient algebra.
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Theorem 3.3 (W., 2022)

Let A= KQ(m,n)/I be a monomail algebra with rad®> A = 0.
Then, A is brick-finite if and only if it does not have A = KQ/I:
B1

m
Q: 1*>2 and / . </8]2_3B§7ﬁ1527ﬁ2ﬁl>1
O

B2
or its opposite algebra as a quotient algebra.

Sketch of the proof:
(1) sr-tilt A~ sr-tilt (A/J), J Crad AN Z(A);

(2) A is brick-infinite, using silting theory.
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Silting Theory

Proposition 3.4 (AIR, 2014)
There exists a poset isomorphism between s7-tilt A and 2-silt A, the
bijection F is given by
f
M}—>(P1@PQ>P0),
where (M, P) is the support 7-tilting pair corresponding to M and
Py LA Po — M — 0 is the minimal projective presentation of M.
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Silting Theory

Proposition 3.4 (AIR, 2014)

There exists a poset isomorphism between s7-tilt A and 2-silt A, the
bijection F is given by

M}—>(P1@P@>P0),

where (M, P) is the support 7-tilting pair corresponding to M and
Py LA Po — M — 0 is the minimal projective presentation of M.

A mutation chain: M) — M@ — ... 5 MK ...
FMD) = F(M?)) —... = F(MC1)) - F(MECH) ...
End End End End

N \ \ N
B BepP . B BopP
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Proposition 3.4 (W., 2022)

Let A= KQ(1,1)/I be a monomail algebra with rad®> A = 0. Then,
A is brick-finite if and only if it does not have one of

. OL,OQ;; with g% =0,
° oz oQ,B with 83 = Bv = vuv = vupB? =0

° aCo#oQﬁ with a? = 32 =0,

and their opposite algebras as a quotient algebra.
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Derived Equivalence Class

e Ais derived equivalent to B < D”(mod A) ~ DP(mod B)
Theorem 4.1 (Ariki-Song-W., 2024)

Let Aq, Ay, ..., As be pairwise derived equivalent symmetric
algebras. Suppose the following conditions hold.

(1) Aj is brick-finite, for all 1 </ <s.
(2) End(p, (Ai)) € {A1,A2,...,As}, forany kand all 1 </ <s.
Then, any algebra B which has derived equivalence

DP(mod B) = DP(mod A;)

is included in {A1, Az, ..., As}.
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Derived Equivalence Class

We consider the following quiver:

Q: aCo%oQB
and define

° A:=KQ/(c?,B% — v, o — pf, Bv — vay).
° B:=KQ/(a? — pv, B2 — vy, ap — pf, v — vo, pyp, vpw).

Proposition 4.2
If C is derived equivalent to A, then C is isomorphic to A or B.
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Thank you! Any questions?

(Quiver representation theory;
Representation type: rep-finite, tame, wild;
Brick finiteness of algebras;

\T—tilting theory;

Simply connected algebras;
Two-point algebras;
Silting theory;

\ Derived equivalence class.
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