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Goal of Algebraic Representation Theory
Classify all indecomposable modules of a given algebra A and all
morphisms between them, up to isomorphism.

An algebra A is said to be
• rep-finite if the number of indecomposable modules is finite.
• tame if A is not rep-finite, but all indecomposable modules

can be organized in a one-parameter family in each dimension.
• wild if there exists a faithful exact K -linear functor from the

module category of K ⟨x , y⟩ to modA.

Quiver Representation Theory
Any (basic, connected) algebra A over an algebraically closed field
K is isomorphic to a bound quiver algebra KQ/I .
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Rep-finite path algebra

Gabriel’s Theorem (Gabriel, 1972)
A path algebra A = KQ is rep-finite if and only if the underlying
graph of Q is one of Dynkin graphs:

• An : ◦ ◦ ◦ · · · ◦ ◦

• Dn :

◦

◦ ◦ · · · ◦ ◦

◦

• E6 :

◦

◦ ◦ ◦ ◦ ◦

• E7 :

◦

◦ ◦ ◦ ◦ ◦ ◦

• E8 :

◦

◦ ◦ ◦ ◦ ◦ ◦ ◦
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Trichotomy Theorem (Drozd, 1977)
The representation type of an algebra A (over K ) is exactly one of
rep-finite, tame and wild.

It leads to two directions:
(1) Studying modA in-depth, such as Auslander-Reiten theory,

homological dimensions, triangulated categories, etc, for
rep-finite and tame algebras;

(2) Studying nice subcategories of modA, such as Serre
subcategories, wide subcategories, etc, for wild algebras.

Aim of this talk
To capture some finite property in wild cases.
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Brick finiteness of algebras

A module M is called a brick if EndA(M) ≃ K .

Then, A is said to be
(1) (Chindris-Kinser-Weyman, 2012) Schur-representation-finite if

there are finitely many bricks of a fixed dimension.
(2) (Demonet-Iyama-Jasso, 2016) brick-finite if there are finitely many

bricks in the module category of A.

• (2) ⇒ (1) is obvious.
• (1) ⇒ (2) is not verified; no counterexample.



Introduction τ -tilting theory Upper and lower boundary Application References

Brick finiteness of algebras

A module M is called a brick if EndA(M) ≃ K .

Then, A is said to be
(1) (Chindris-Kinser-Weyman, 2012) Schur-representation-finite if

there are finitely many bricks of a fixed dimension.
(2) (Demonet-Iyama-Jasso, 2016) brick-finite if there are finitely many

bricks in the module category of A.

• (2) ⇒ (1) is obvious.
• (1) ⇒ (2) is not verified; no counterexample.



Introduction τ -tilting theory Upper and lower boundary Application References

Wild, but brick-finite

Set Λn = KQ/In with

Q : 1 α // 2 βee and In : ⟨βn, αβ2⟩, n ⩾ 2,

the representation type of Λn is
• rep-finite if n ⩽ 5;
• tame if n = 6;
• wild if n ⩾ 7.

But, Λn admits only 4 bricks for any n ⩾ 2.
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Known Result

The brick finiteness is known, for example, for
• preprojective algebras of Dynkin type (Mizuno, 2014);
• algebras with radical square zero (Adachi, 2016);
• cycle-finite algebras (Malicki-Skowroński, 2016);
• Brauer graph algebras (Adachi-Aihara-Chan, 2018);
• gentle algebras (Plamondon, 2018);
• (special) biserial algebras (Mousavand, 2019;

Schroll-Treffinger-Valdivieso, 2021);
• cluster-tilted algebras (Zito, 2019);
• minimal wild two-point algebras (W., 2019);
• quasi-tilted algebras, locally hereditary algebras, etc.,

(Aihara-Honma-Miyamoto-W., 2020).
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τ-tilting theory
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τ -tilting theory was introduced by Adachi, Iyama and Reiten in
2014, as a completion to the classical tilting theory.

So far, τ -tilting theory is related to several different aspects in
Representation Theory of Algebras:

• Categorical objects, such as torsion class, silting complex;
• Combinatorial objects, such as brick, semibrick;
• Lattice theory, such as the lattice of torsion classes;
• Geometric objects, such as the modern Brauer-Thrall

conjecture, wall-and-chamber structure.
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Auslander-Reiten translation

Nakayama functor ν(−) : proj A → inj A

Let M be an A-module with a minimal projective presentation

P1
f1−→ P0

f0−→ M −→ 0,

the Auslander-Reiten translation τM is defined by the following
exact sequence

0 −→ τM −→ νP1
νf1−→ νP0,

that is, τM = ker νf1.
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Definition 2.1 (Adachi-Iyama-Reiten, 2014)
Let M be a right A-module. Then,
(1) M is called τ -rigid if HomA(M, τM) = 0.
(2) M is called τ -tilting if M is τ -rigid and |M| = |A|.
(3) M is called support τ -tilting if M is a τ -tilting

(A/AeA)-module for an idempotent e of A.

(3’) Set P := eA, (M,P) is called a support τ -tilting pair.

We have

iτ -rigidA gives τ -tiltA ⊆ sτ -tiltA ⊆ τ -rigidA
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Mutation

Reminder: M1 ⊕ · · · ⊕Mj ⊕ · · · ⊕Mn ⇒ M1 ⊕ · · · ⊕M∗
j ⊕ · · · ⊕Mn.

• add(M): the full subcategory whose objects are direct
summands of finite direct sums of copies of M;

• Fac(M): the full subcategory whose objects are factor modules
of finite direct sums of copies of M.

Definition 2.2 (AIR, 2014)
Let M = M1 ⊕ · · · ⊕Mj ⊕ · · · ⊕Mn with Mj /∈ Fac(M/Mj). Take a
minimal left add(M/Mj)-approximation π with an exact sequence

Mj
π−→ Z −→ coker π −→ 0.

We call µ−
j (M) := coker π ⊕ (M/Mj) the left mutation of M with

respect to Mj , which is again a support τ -tilting A-module.
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Mutation Graph

We draw an arrow M → µ−
j (M), it gives a graph H(sτ -tiltA).

For example, H(sτ -tiltΛ2) is displayed as

1
2
2
⊕ 2

2
2
2

1
2
2
⊕ 1

2

1
2 1 ⊕ 1

2

1
2 1 0

.

Proposition 2.3 (AIR, 2014)
If the mutation graph H(sτ -tiltA) contains a finite connected
component ∆, then H(sτ -tiltA) = ∆.
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Connection with brick finiteness

• brick A: the set of bricks in modA
• fbrick A: the set of bricks M such that the smallest torsion

class T(M) containing M is functorially finite.

Theorem 2.4 (Demonet-Iyama-Jasso, 2016)
There exists a bijection between iτ -rigidA and fbrick A given by

X 7→ X/radB(X ),

where B := EndA(X ). If iτ -rigidA is finite, brick A = fbrick A.

e.g.,

iτ -rigidΛ2
1
2
2

2
2 1

2

1
2 1

brick Λ2
1
2
2

2 1
2 1
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Reduction Theorem

Proposition 2.5 (Demonet-Iyama-Jasso, 2016)
If A is brick-finite, then
(1) A/I is brick-finite, for any two-sided ideal I of A.
(2) eAe is brick-finite, for any idempotent e of A.

Proposition 2.6 (Eisele-Janssens-Raedschelders, 2018)
Let I be a two-sided ideal generated by central elements which are
contained in the radical of A. Then,

sτ -tiltA ≃ sτ -tilt (A/I ).
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Upper and lower boundary
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Upper boundary

Let A be an algebra without loops and oriented cycles. We want to
see what happens if A has lots of vertices. For example,

◦ //

��

◦ //

��

◦ //

��

. . . // ◦ //

��

◦
��

◦ //

��
◦ //

��
◦ //

��
. . . // ◦ //

��
◦
��

...

��

...

��

...

��

...
...

��

...

��
◦ //

��

◦ //

��

◦ //

��

. . . // ◦ //

��

◦
��

◦ // ◦ // ◦ // . . . // ◦ // ◦

◦
��

◦

??

��

◦
��

◦

??

��

◦

??

��

◦
��

◦

??

◦

??

◦

??

◦

...
...

...

This motivates us to consider simply connected algebras.
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Simply connected algebra

Let A = KQ/I without loops and oriented cycles. We consider the
fundamental group Π1(Q, I ) of A. Then, A is said to be a simply
connected algebra if, for every bound quiver presentation KQ/I
of A, Π1(Q, I ) is trivial. (Assem-Skowroński, 1988)

We have the following examples.
(1) All tree algebras are simply connected.
(2) A path algebra KQ is simply connected if and only if Q is a

tree. For example, KQ is not simply connected if

Q =

◦ //

��

◦

��
◦ // ◦

.
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Theorem 3.1 (W., 2019)
Let A be a simply connected algebra. Then,

A is brick-finite ⇔ A is rep-finite.

Sketch of the proof:

• A: rep-finite ⇒ brick-finite, obvious;

• A: rep-infinite

⇒ there exists an idempotent e of A such that eAe is one of
concealed algebras of type D̃n, Ẽ6, Ẽ7, Ẽ8 (Bongartz, 1984);

⇒ the above eAe is brick-infinite;

⇒ A is brick-infinite (Proposition 2.4).
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Rectangle Quiver

Let Bm,n (m ⩽ n) be the algebra given by the following quiver with
all possible commutativity relations:

(1, 1) //

��

(1, 2) //

��

◦ //

��

. . . // ◦ //

��

(1, n)

��
(2, 1) //

��

(2, 2) //

��

◦ //

��

. . . // ◦ //

��

◦
��

...

��

...

��

...

��

...
...

��

...

��
◦ //

��

◦ //

��

◦ //

��

. . . // ◦ //

��

◦
��

(m, 1) // ◦ // ◦ // . . . // ◦ // (m, n)

Then, Bm,n is brick-finite if and only if

(m, n) ∈ {(1, n), (2, 2), (2, 3), (2, 4)}.
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Tensor product algebras

A : ◦ // ◦ ◦oo , B : ◦ ◦ //oo ◦

⇒ A⊗ B :

• // ◦ •oo

• //

OO

��

•

OO

��

•

OO

��

oo

• // ◦ •oo

A⊗ B : Simply connected

B : Nakayama
B : non-Nakayama

rad2 = 0
rad2 ̸= 0

|B| = 3 |B| ≥ 4 |B| = 3 |B| = 4 |B| ≥ 5

A: Nakayama
rad2 = 0

|A| = 3
F F&IF F F&IF

F&IF

|A| ≥ 4 IF

rad2 ̸= 0 F&IF IF IF

A: non-Nakayama

|A| = 3 F

IF|A| = 4 F&IF IF

|A| ≥ 5 F&IF IF
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Lower boundary

A local algebra is always brick-finite, whose quiver is given as

◦99 , ◦99 ee , ◦99 ee
��

, · · ·

This forces us to focus on A = KQ/I with only two vertices:

◦
////// ◦ , ◦

//
// ◦

oo
oo , ◦99 //// ◦ , · · ·

or

◦ // ◦
��
, ◦ //��

◦
��
, ◦ // ◦oo

��
, ◦
�� // ◦oo

��
, · · ·
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Two-point algebra

Proposition 3.2
The Kronecker algebra K ( 1 //// 2 ) is brick-infinite.

Proof: It is well-known that K
λ //
1
// K is a brick, for any λ ∈ K .

We only need to consider

Q(m, n) := 1
µ //

α1

��
...

%%

αm

EE 2
ν

oo

β1

��
...ee

βn

EE
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Theorem 3.3 (W., 2022)
Let A = KQ(m, n)/I be a monomail algebra with rad3 A = 0.
Then, A is brick-finite if and only if it does not have ∆ = KQ/I :

Q : 1 // 2

β1

��

β2

YY and I : ⟨β2
1 , β

2
2 , β1β2, β2β1⟩,

or its opposite algebra as a quotient algebra.

Sketch of the proof:

(1) sτ -tiltA ≃ sτ -tilt (A/J), J ⊆ rad A ∩ Z (A);

(2) ∆ is brick-infinite, using silting theory.
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Silting Theory

Proposition 3.4 (AIR, 2014)
There exists a poset isomorphism between sτ -tiltA and 2-siltA, the
bijection F is given by

M � // (P1 ⊕ P
(f0)−→ P0) ,

where (M,P) is the support τ -tilting pair corresponding to M and
P1

f→ P0 → M → 0 is the minimal projective presentation of M.

A mutation chain: M(1) → M(2) → · · · → M(k) → · · ·

F(M(1)) //

End
��

F(M(2)) //

End
��

· · · // F(M(2k−1)) //

End
��

F(M(2k)) //

End
��

· · ·

B Bop · · · B Bop · · ·
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Proposition 3.4 (W., 2022)
Let A = KQ(1, 1)/I be a monomail algebra with rad5 A = 0. Then,
A is brick-finite if and only if it does not have one of

• ◦ µ // ◦ βee with β4 = 0,

• ◦
µ // ◦
ν

oo βee with β3 = βν = νµν = νµβ2 = 0,

• ◦α
%% µ // ◦ βee with α2 = β2 = 0,

and their opposite algebras as a quotient algebra.
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Application
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Derived Equivalence Class

• A is derived equivalent to B ⇔ Db(modA) ≃ Db(modB)

Theorem 4.1 (Ariki-Song-W., 2024)
Let A1,A2, . . . ,As be pairwise derived equivalent symmetric
algebras. Suppose the following conditions hold.
(1) Ai is brick-finite, for all 1 ≤ i ≤ s.
(2) End(F(µ−

k (Ai ))) ∈ {A1,A2, . . . ,As}, for any k and all
1 ≤ i ≤ s.

Then, any algebra B which has derived equivalence

Db(modB) ∼= Db(modA1)

is included in {A1,A2, . . . ,As}.
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We consider the following quiver:

Q : ◦
µ //

α
%%

◦
ν

oo βee ,

and define
• A := KQ/⟨α2, β2 − νµ, αµ− µβ, βν − να⟩.
• B := KQ/⟨α2 − µν, β2 − νµ, αµ− µβ, βν − να, µνµ, νµν⟩.

Proposition 4.2
If C is derived equivalent to A, then C is isomorphic to A or B .
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· · ·

µ−
1 (µ

−
1 (µ

−
1 (A))) B

22

��

· · ·[1]
ll

µ−
1 (µ

−
1 (A)) B

��

44

· · ·

µ−
2 (µ

−
1 (µ

−
1 (µ

−
1 (A)))) A

[1]
kk

22

· · · · · ·[1]ll

µ−
2 (A) A

��

jj

µ−
1 (A) B

��

;;

· · ·
[1]
44

· · ·

µ−
2 (µ

−
2 (µ

−
1 (µ

−
1 (A)))) A

��

22

· · ·[1]ll

µ−
2 (µ

−
1 (µ

−
1 (A))) A

[1]

cc

44

· · ·

µ−
1 (µ

−
2 (µ

−
2 (µ

−
1 (µ

−
1 (A))))) B

[1]
kk

22

A

IIUU

· · ·[1]
kk

· · ·

µ−
2 (µ

−
2 (µ

−
1 (A))) A

��

11

· · · · · ·
[1]

mm

µ−
1 (µ

−
2 (A)) B

[1]

CC

jj

µ−
2 (µ

−
1 (A)) A

[1]

[[

55

· · · [1] 44 · · ·

µ−
1 (µ

−
2 (µ

−
2 (µ

−
1 (A)))) B

[1]
ii

11

· · ·[1]
mm
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Thank you! Any questions?


Quiver representation theory;
Representation type: rep-finite, tame, wild;
Brick finiteness of algebras;
τ -tilting theory;
Simply connected algebras;
Two-point algebras;
Silting theory;
Derived equivalence class.
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