# Representation type of cyclotomic quiver Hecke algebras in affine type A<sup>1</sup>

Qi WANG Yau Mathematical Sciences Center Tsinghua University

@CNU, May 16, 2023.

<sup>&</sup>lt;sup>1</sup>This is joint work with Susumu Ariki and Linliang Song.

Introduction

KLR algebras

Maximal weights

References

Introduction •000000

We start with Quiver Representation Theory.

Quivers:

$$\bigcirc \circ \rightleftharpoons \circ \bigcirc , \circ \longrightarrow \circ \longrightarrow \circ , \bigcirc \circ \longrightarrow \circ .$$

A quiver representation:

$$V_1 \xrightarrow{f} V_2 \xrightarrow{g} V_3$$
.

We may study quiver rep's algebraically or geometrically.

A quiver representation:

Introduction

0000000

$$V_1 \stackrel{f}{\longrightarrow} V_2 \stackrel{g}{\longrightarrow} V_3$$
.

• Algebraic viewpoint:

• Geometric viewpoint:

#### A quiver representation:

$$V_1 \xrightarrow{f} V_2 \xrightarrow{g} V_3$$
.

Algebraic viewpoint: to find all indecomposable rep's.

e.g., the above example has 6 indecomposable rep's:

$$K \xrightarrow{0} 0 \xrightarrow{0} 0 \qquad K \xrightarrow{1} K \xrightarrow{0} 0$$

$$0 \xrightarrow{0} K \xrightarrow{0} 0 \qquad 0 \xrightarrow{0} K \xrightarrow{1} K$$

$$0 \xrightarrow{0} 0 \xrightarrow{0} K \qquad K \xrightarrow{1} K \xrightarrow{1} K$$

where K is a field (algebraically closed).

Geometric viewpoint:

#### A quiver representation:

$$V_1 \xrightarrow{f} V_2 \xrightarrow{g} V_3$$
.

Algebraic viewpoint: to find all indecomposable rep's.

e.g., the above example has 6 indecomposable rep's:

where K is a field (algebraically closed).

• **Geometric viewpoint**: to fix all vector spaces  $V_i$  and change matrices f, g. This gives an affine module variety.

## Algebraic Representation Theory

Any (basic, connected) algebra A over K is isomorphic to a bound quiver algebra KQ/I.

Any (basic, connected) algebra A over K is isomorphic to a bound quiver algebra KQ/I.

An algebra A is said to be

Introduction

- rep-finite if the number of indecomposable rep's is finite.
- tame if it is not rep-finite, but all indecomposable rep's can be organized in a one-parameter family in each dimension.

Otherwise. A is called wild.

## Algebraic Representation Theory

Any (basic, connected) algebra A over K is isomorphic to a bound quiver algebra KQ/I.

An algebra A is said to be

- rep-finite if the number of indecomposable rep's is finite.
- tame if it is not rep-finite, but all indecomposable rep's can be organized in a one-parameter family in each dimension.

Otherwise. A is called wild.

## Theorem (Drozd 1977)

The representation type of any algebra (over K) is exactly one of rep-finite, tame and wild.

## Example: tame algebras

e.g.,  $\circ \Longrightarrow \circ$  is tame. Indecomposable rep's:

dimension 2: 
$$K \xrightarrow{1 \atop 0} K$$
  $K \xrightarrow{1 \atop \lambda} K$ 

dimension 3:  $K^2 \xrightarrow{(1,0)} K$   $K \xrightarrow{(1,0)^t} K^2$ 

dimension 4:  $K^2 \xrightarrow{I_2} K^2$   $K^2 \xrightarrow{I_2} K^2$ 

$$\vdots$$

$$K^{n+1} \xrightarrow{[I_n,O]} K^n \xrightarrow{I_n} K^n \xrightarrow{I_n} K^n$$

## Example: wild algebras

e.g., o o . Indecomposable rep's:

dimension 3: 
$$K^2 \xrightarrow{(0,1)} K \quad a = (\lambda, \mu)$$

Impossible! to give a complete classification of indecomposable rep's for a wild algebra.

Introduction 0000000

• rep-finite: e.g., Brauer tree algebras

• tame: e.g., Brauer graph algebras

wild:

Introduction

000000

KLR algebras

## KLR algebras in affine type A

## Hecke algebras of type A

Maximal weights

The symmetric group  $\mathfrak{S}_n$  (= permutation group of  $\{1, 2, \dots, n\}$ ) is generated by  $\{s_i = (i, i+1) \mid 1 \le i \le n-1\}$  subject to

$$s_i^2 = 1, (\Leftrightarrow (s_i + 1)(s_i - 1) = 0)$$

$$s_i s_j = s_j s_i$$
 if  $|i - j| \neq 1$ ,  $s_i s_j s_i = s_j s_i s_j$  if  $|i - j| = 1$ .

## Hecke algebras of type A

Maximal weights

The symmetric group  $\mathfrak{S}_n$  (= permutation group of  $\{1, 2, \dots, n\}$ ) is generated by  $\{s_i = (i, i+1) \mid 1 \le i \le n-1\}$  subject to

$$s_i^2 = 1, (\Leftrightarrow (s_i + 1)(s_i - 1) = 0)$$

$$s_i s_j = s_j s_i$$
 if  $|i - j| \neq 1$ ,  $s_i s_j s_i = s_j s_i s_j$  if  $|i - j| = 1$ .

The Iwahori-Hecke algebra  $\mathcal{H}(\mathfrak{S}_n)$  is the  $\mathbb{Z}[q,q^{-1}]$ -algebra generated by  $\{T_i \mid 1 \le i \le n-1\}$  subject to

$$T_i^2 = (q-1)T_i + q, (\Leftrightarrow (T_i+1)(T_i-q)=0)$$

$$T_iT_j = T_jT_i$$
 if  $|i-j| \neq 1$ ,  $T_iT_jT_i = T_jT_iT_j$  if  $|i-j| = 1$ .

## In the last fifty years, the representation theory of symmetric groups had a close connection with Lie theory via categorification.

- Hecke algebras of Coxeter groups, i.e., of type B, D, E, etc.
- Cyclotomic Hecke algebras (a.k.a. Ariki-Koike algebras). See [Ariki-Koike, 1994], [Broue-Malle, 1993], and [Cherednik 1987].
- Cyclotomic quiver Hecke algebras (a.k.a. Cyclotomic KLR algebras). See [Khovanov-Lauda, 2009] and [Rouquier, 2008].

Many classes of algebras arise in this process, whose representation type is completely determined, in particular, for

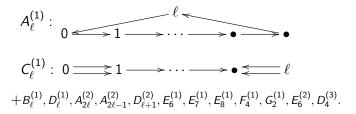
- (1) Hecke alg's in type ABD (Ariki, 2000);
- (2) Cyclotomic quiver Hecke alg's of level 1 in affine type ACD (Ariki-Iijima-Park 2014, 2015); of level 2 in affine type A (Ariki 2017);
- (3) Schur/q-Schur/Borel-Schur/infinitesimal-Schur alg's (Xi 1993, Erdmann 1993, Doty-Erdmann-Martin 1999, Erdmann-Nakano 2001, etc);
- (4) block alg's of category  $\mathcal{O}$ ; (Futorny-Nakano-Pollack 1999, Boe-Nakano 2005, etc)

Many classes of algebras arise in this process, whose representation type is completely determined, in particular, for

- (1) Hecke alg's in type ABD (Ariki, 2000);
- (2) Cyclotomic quiver Hecke alg's of level 1 in affine type ACD (Ariki-lijima-Park 2014, 2015); of level 2 in affine type A (Ariki 2017); of level k in affine type A (Ariki-Song-W. 2023);
- (3) Schur/q-Schur/Borel-Schur/infinitesimal-Schur alg's (Xi 1993, Erdmann 1993, Doty-Erdmann-Martin 1999, Erdmann-Nakano 2001, etc);
- (4) block alg's of category  $\mathcal{O}$ ; (Futorny-Nakano-Pollack 1999, Boe-Nakano 2005, etc)

#### Lie theoretic data

Let  $I = \{0, 1, ..., \ell\}$  be an index set. Recall that



Let  $I = \{0, 1, ..., \ell\}$  be an index set. Recall that

$$A_{\ell}^{(1)}: 0 \longrightarrow 1 \longrightarrow \cdots \longrightarrow \bullet \longrightarrow \bullet$$

$$C_{\ell}^{(1)}: 0 \longrightarrow 1 \longrightarrow \cdots \longrightarrow \bullet \longrightarrow \ell$$

$$+B_{\ell}^{(1)}, D_{\ell}^{(1)}, A_{2\ell}^{(2)}, A_{2\ell-1}^{(2)}, D_{\ell+1}^{(2)}, E_{6}^{(1)}, E_{7}^{(1)}, E_{8}^{(1)}, F_{4}^{(1)}, G_{2}^{(1)}, E_{6}^{(2)}, D_{4}^{(3)}.$$

$$E_{\ell}^{(1)}(i) = i$$

Set  $n_{ii} := \#(i \rightarrow j)$ .

Let  $I = \{0, 1, ..., \ell\}$  be an index set. Recall that

$$A_{\ell}^{(1)}: 0 \longrightarrow 1 \longrightarrow \cdots \longrightarrow \bullet \longrightarrow \bullet$$

$$C_{\ell}^{(1)}: 0 \longrightarrow 1 \longrightarrow \cdots \longrightarrow \bullet \longleftarrow \ell$$

$$+B_{\ell}^{(1)}, D_{\ell}^{(1)}, A_{2\ell}^{(2)}, A_{2\ell-1}^{(2)}, D_{\ell+1}^{(2)}, E_{6}^{(1)}, E_{7}^{(1)}, E_{8}^{(1)}, F_{4}^{(1)}, G_{2}^{(1)}, E_{6}^{(2)}, D_{4}^{(3)}.$$

Set  $n_{ii} := \#(i \to j)$ . We define the Cartan matrix  $A = (a_{ii})_{i,i \in I}$  by

$$a_{ii} = 2, \quad a_{ij} = \left\{ egin{array}{ll} -n_{ij} & ext{if } n_{ij} > n_{ji} \ -1 & ext{if } n_{ij} < n_{ji} \ (i 
eq j). \ -n_{ij} - n_{ji} & ext{otherwise} \end{array} 
ight.$$

Let  $(A, P, \Pi, P^{\vee}, \Pi^{\vee})$  be the Cartan datum in type  $A_{\ell}^{(1)}$ , where

Maximal weights

- $P = \bigoplus_{i=0}^{\ell} \mathbb{Z}\Lambda_i \oplus \mathbb{Z}\delta$  is the weight lattice;
- $\Pi = \{\alpha_i \mid i \in I\} \subset P$  is the set of simple roots;
- $P^{\vee} = \text{Hom}(P, \mathbb{Z})$  is the coweight lattice;
- $\Pi^{\vee} = \{h_i \mid i \in I\} \subset P^{\vee}$  is the set of simple coroots.

The null root is  $\delta = \alpha_0 + \alpha_1 + \ldots + \alpha_\ell$ . We have

$$\langle h_i, \alpha_j \rangle = a_{ij}, \langle h_i, \Lambda_j \rangle = \delta_{ij}$$
 for all  $i, j \in I$ .

We set  $P^+ := \{ \Lambda \in P \mid \langle h_i, \Lambda \rangle \in \mathbb{Z}_{>0}, i \in I \}.$ 

## A family of polynomials in type A

Fix  $t \in K$  if  $\ell = 1$  and  $0 \neq t \in K$  if  $\ell \geq 2$ .

For  $i,j \in I$ , we take  $Q_{i,j}(u,v) \in K[u,v]$  such that  $Q_{i,j}(u,v) = 0$ ,  $Q_{i,j}(u,v) = Q_{j,i}(v,u)$  and if  $\ell \geq 2$ ,

$$Q_{i,i+1}(u,v) = u + v \text{ if } 0 \le i < \ell,$$
  
 $Q_{\ell,0}(u,v) = u + tv,$   
 $Q_{i,j}(u,v) = 1 \text{ if } j \not\equiv_e i, i \pm 1.$ 

If  $\ell = 1$ , we take  $Q_{0,1}(u, v) = u^2 + tuv + v^2$ .

## Quiver Hecke algebras

The quiver Hecke algebra R(n) associated with  $(Q_{i,i}(u,v))_{i,i\in I}$  is the  $\mathbb{Z}$ -graded  $\mathbb{k}$ -algebra generated by

$$\{e(\nu) \mid \nu = (\nu_1, \nu_2, \dots, \nu_n) \in I^n\}, \{x_i \mid 1 \le i \le n\}, \{\psi_j \mid 1 \le j \le n-1\},$$

subject to the following relations:

- (1)  $e(\nu)e(\nu') = \delta_{\nu,\nu'}e(\nu), \sum_{\nu \in I^n} e(\nu) = 1, x_i x_i = x_i x_i, x_i e(\nu) = e(\nu)x_i.$
- (2)  $\psi_i e(\nu) = e(s_i(\nu))\psi_i, \ \psi_i \psi_i = \psi_i \psi_i \text{ if } |i-j| > 1.$
- (3)  $\psi_i^2 e(\nu) = Q_{\nu_i,\nu_{i+1}}(x_i, x_{i+1})e(\nu).$
- $\left(4\right) \ \, (\psi_i \mathsf{x}_j \mathsf{x}_{\mathsf{s}_i(j)} \psi_i) e(\nu) = \left\{ \begin{array}{ll} -e(\nu) & \text{if } j=i \text{ and } \nu_i = \nu_{i+1}, \\ e(\nu) & \text{if } j=i+1 \text{ and } \nu_i = \nu_{i+1}, \\ 0 & \text{otherwise}. \end{array} \right.$
- $(5) \ (\psi_{i+1}\psi_i\psi_{i+1} \psi_i\psi_{i+1}\psi_i)e(\nu) = \left\{ \begin{array}{ll} \frac{Q_{\nu_i,\nu_{i+1}}(x_i,x_{i+1}) Q_{\nu_i,\nu_{i+1}}(x_{i+2},x_{i+1})}{x_i x_{i+2}}e(\nu) & \text{if } \nu_i = \nu_{i+2}, \\ 0 & \text{otherwise}. \end{array} \right.$

## Cyclotomic quiver Hecke algebras

Fix  $\Lambda \in P^+$ . The cyclotomic quiver Hecke algebra  $R^{\Lambda}(n)$  w.r.t.  $\Lambda$  is defined as the quotient of R(n) modulo the relation

$$x_1^{\langle h_{\nu_1},\Lambda\rangle}e(\nu)=0.$$

## Cyclotomic quiver Hecke algebras

Maximal weights

Fix  $\Lambda \in P^+$ . The cyclotomic quiver Hecke algebra  $R^{\Lambda}(n)$  w.r.t.  $\Lambda$  is defined as the quotient of R(n) modulo the relation

$$x_1^{\langle h_{\nu_1},\Lambda\rangle}e(\nu)=0.$$

Here,  $R^{\Lambda}(n)$  is a finite-dimensional symmetric algebra proved by Shan-Varagnolo-Vasserot in 2017.

## Cyclotomic quiver Hecke algebras

Fix  $\Lambda \in P^+$ . The cyclotomic quiver Hecke algebra  $R^{\Lambda}(n)$  w.r.t.  $\Lambda$  is defined as the quotient of R(n) modulo the relation

$$x_1^{\langle h_{\nu_1},\Lambda\rangle}e(\nu)=0.$$

Here,  $R^{\Lambda}(n)$  is a finite-dimensional symmetric algebra proved by Shan-Varagnolo-Vasserot in 2017.

Let  $Q_+ = \sum_{i \in I} \mathbb{Z}_{\geq 0} \alpha_i$ . For each  $\beta \in Q_+$  with  $|\beta| = n$ , we define

$$R^{\Lambda}(\beta) := e(\beta)R^{\Lambda}(n)e(\beta),$$

where  $e(\beta) := \sum_{\nu \in I^{\beta}} e(\nu)$  with  $I^{\beta} = \left\{ \nu = (\nu_1, \nu_2, \dots, \nu_n) \in I^n \mid \sum_{i=1}^n \alpha_{\nu_i} = \beta \right\}$ .

## An example

Set 
$$\Lambda = k\Lambda_0$$
,  $\ell = 2$ . Then,  $I = \{0, 1, 2\}$  and  $R(3)$  is generated by  $\{e(000), \dots, e(012), \dots, e(212), \dots\}, \{x_1, x_2, x_3\}, \{\psi_1, \psi_2\},$ 

subject to the relations.

Set 
$$\Lambda = k\Lambda_0$$
,  $\ell = 2$ . Then,  $I = \{0, 1, 2\}$  and  $R(3)$  is generated by  $\{e(000), \dots, e(012), \dots, e(212), \dots\}, \{x_1, x_2, x_3\}, \{\psi_1, \psi_2\}.$ 

subject to the relations.

Set 
$$\beta = \alpha_1 + \alpha_2 + \alpha_3$$
. Then,  $R^{\Lambda}(\beta)$  is generated by  $\{e(012), e(021), e(102), e(120), e(201), e(210)\}, \{x_1, x_2, x_3\}, \{\psi_1, \psi_2\},$ 

subject to

• 
$$e(102) = e(120) = e(201) = e(210) = 0, x_1^k e(012) = x_1^k e(021) = 0;$$

• 
$$\psi_1 e(012) = \psi_1 e(021) = 0$$
,  $\psi_2 e(012) = e(021)\psi_2$ ;

• 
$$x_2e(012) = -x_1e(012), x_2e(021) = -tx_1e(021);$$

• 
$$x_3^2 e(012) = tx_1^2 e(012) + (1-t)x_1x_3 e(012)$$
, etc.

## Known results on cyclotomic KLR algebras

We know the representation type of cyclotomic KLR algebras in the following cases.

- $R^{\Lambda_0}(\beta)$  in type  $A_{2\ell}^{(2)}$ , see [Ariki-Park, 2014].
- $R^{\Lambda_0}(\beta)$  in type  $A_\ell^{(1)}$ , see [Ariki-lijima-Park, 2015].
- $R^{\Lambda_0}(\beta)$  in type  $C_{\ell}^{(1)}$ , see [Ariki-Park, 2015].
- $R^{\Lambda_0}(\beta)$  in type  $D_{\ell+1}^{(2)}$ , see [Ariki-Park, 2016].
- $R^{\Lambda_0 + \Lambda_s}(\beta)$  in type  $A_{\ell}^{(1)}$ , see [Ariki, 2017].

In this talk, we explain the representation type of  $R^{\Lambda}(\beta)$  in type  $A_{\ell}^{(1)}$ , for arbitrary  $\Lambda \in P^+$ .

• Rickard's result tells us that two symmetric algebras have the same representation type if they are derived equivalent.

## Representation type of $R^{\Lambda}(\beta)$

- Rickard's result tells us that two symmetric algebras have the same representation type if they are derived equivalent.
- Chuang and Rouquier's result tells us that  $R^{\Lambda}(\beta)$  and  $R^{\Lambda}(\beta')$  are derived equivalent if  $\Lambda \beta$  and  $\Lambda \beta'$  lie in the same W-orbit of the set  $P(\Lambda)$  of weights of  $V(\Lambda)$ , where W is the affine symmetric group generated by (for  $i \in I$ )

$$s_i^2 = 1, s_i s_j = s_j s_i \text{ if } |i-j| \not\equiv_{\ell+1} 1, s_i s_j s_i = s_j s_i s_j \text{ if } |i-j| \equiv_{\ell+1} 1.$$

## Representation type of $R^{\Lambda}(\beta)$

Maximal weights

- Rickard's result tells us that two symmetric algebras have the same representation type if they are derived equivalent.
- Chuang and Rouquier's result tells us that  $R^{\Lambda}(\beta)$  and  $R^{\Lambda}(\beta')$  are derived equivalent if  $\Lambda \beta$  and  $\Lambda \beta'$  lie in the same W-orbit of the set  $P(\Lambda)$  of weights of  $V(\Lambda)$ , where W is the affine symmetric group generated by (for  $i \in I$ )

$$s_i^2 = 1, s_i s_j = s_j s_i \text{ if } |i-j| \not\equiv_{\ell+1} 1, s_i s_j s_i = s_j s_i s_j \text{ if } |i-j| \equiv_{\ell+1} 1.$$

• A weight  $\mu \in P(\Lambda)$  is maximal if  $\mu + \delta \notin P(\Lambda)$ . We define

$$\max^+(\Lambda) := \{ \mu \in P^+ \mid \mu \text{ is maximal} \}.$$

Kac's result tells us that the representatives of W-orbits in  $P(\Lambda)$  are given by  $\{\mu - m\delta \mid \mu \in \max^+(\Lambda), m \in \mathbb{Z}_{\geq 0}\}.$ 

$$\max^+(\Lambda)$$

We briefly recall the construction in [Kim-Oh-Oh, 2020] as follows.

Set 
$$\Lambda=a_{i_1}\Lambda_{i_1}+a_{i_2}\Lambda_{i_2}+\cdots+a_{i_n}\Lambda_{i_n}\in P^+$$
. We define 
$$\operatorname{le}(\Lambda)=\sum a_{i_j}\quad\text{and}\quad\operatorname{ev}(\Lambda)=i_1+i_2+\cdots+i_n.$$

Suppose  $le(\Lambda) = k$ . Then,

$$P^+_{cl,k}(\Lambda) = \left\{ \Lambda' \in P^+ \mid \operatorname{le}(\Lambda) = \operatorname{le}(\Lambda'), \operatorname{ev}(\Lambda) \equiv_{\ell+1} \operatorname{ev}(\Lambda') \right\}.$$

$$\max^+(\Lambda)$$

We briefly recall the construction in [Kim-Oh-Oh, 2020] as follows.

Set 
$$\Lambda=a_{i_1}\Lambda_{i_1}+a_{i_2}\Lambda_{i_2}+\cdots+a_{i_n}\Lambda_{i_n}\in P^+$$
. We define 
$$\mathsf{le}(\Lambda)=\sum a_{i_j}\quad\mathsf{and}\quad \mathsf{ev}(\Lambda)=i_1+i_2+\cdots+i_n.$$

Suppose  $le(\Lambda) = k$ . Then,

$$P^+_{cl,k}(\Lambda) = \left\{ \Lambda' \in P^+ \mid \operatorname{le}(\Lambda) = \operatorname{le}(\Lambda'), \operatorname{ev}(\Lambda) \equiv_{\ell+1} \operatorname{ev}(\Lambda') \right\}.$$

e.g.,  $P_{cI,3}^+(\Lambda_0 + \Lambda_3 + \Lambda_6)$  with  $\ell = 6$  consists of  $\Lambda_0 + \Lambda_3 + \Lambda_6$ ,  $\Lambda_1 + \Lambda_2 + \Lambda_6$ ,  $\Lambda_1 + \Lambda_3 + \Lambda_5$ ,  $\Lambda_0 + \Lambda_4 + \Lambda_5$ ,  $\Lambda_2 + \Lambda_3 + \Lambda_4$ ,  $2\Lambda_0 + \Lambda_2$ ,  $\Lambda_4 + 2\Lambda_6$ ,  $2\Lambda_5 + \Lambda_6$ ,  $\Lambda_0 + 2\Lambda_1$ ,  $2\Lambda_2 + \Lambda_5$ ,  $\Lambda_1 + 2\Lambda_4$ ,  $2\Lambda_0 + \Lambda_2$ ,  $3\Lambda_3$ .

## Theorem (Kim-Oh-Oh 2020)

For any  $\Lambda \in P^+_{cl,k}$ , there is a bijection  $\phi_{\Lambda} : \max^+(\Lambda) \to P^+_{cl,k}(\Lambda)$ .

For any  $\Lambda \in P^+_{cl,k}$ , there is a bijection  $\phi_{\Lambda} : \max^+(\Lambda) \to P^+_{cl,k}(\Lambda)$ .

**Remaining:** to obtain the inverse  $\phi_{\Lambda}^{-1}$ .

## Theorem (Kim-Oh-Oh 2020)

For any  $\Lambda \in P^+_{cl,k}$ , there is a bijection  $\phi_{\Lambda} : \max^+(\Lambda) \to P^+_{cl,k}(\Lambda)$ .

**Remaining:** to obtain the inverse  $\phi_{\Lambda}^{-1}$ .

Recall that 
$$\langle h_i, \Lambda_j \rangle = \delta_{ij}$$
. We define  $y_i := \langle h_i, \Lambda - \Lambda' \rangle$  and  $Y_{\Lambda'} := (y_0, y_1, \dots, y_\ell) \in \mathbb{Z}^{\ell+1}$ .

For any  $\Lambda \in P^+_{cl,k}$ , there is a bijection  $\phi_{\Lambda} : \max^+(\Lambda) \to P^+_{cl,k}(\Lambda)$ .

Maximal weights

**Remaining:** to obtain the inverse  $\phi_{\Lambda}^{-1}$ .

Recall that  $\langle h_i, \Lambda_i \rangle = \delta_{ii}$ . We define  $y_i := \langle h_i, \Lambda - \Lambda' \rangle$  and

$$Y_{\Lambda'}:=(y_0,y_1,\ldots,y_\ell)\in\mathbb{Z}^{\ell+1}.$$

Then, we consider the linear equation  $AX^t = Y_{\Lambda'}^t$ .

# Proposition (Ariki-Song-W. 2023)

• The linear equation  $AX^t = Y_{\Lambda'}^t$  has a unique solution  $X = (x_0, \dots, x_\ell)$  satisfying

$$X \in \mathbb{Z}_{\geq 0}^{\ell+1}$$
 and  $\min\{x_i\} = 0$ .

## Proposition (Ariki-Song-W. 2023)

• The linear equation  $AX^t = Y_{\Lambda'}^t$  has a unique solution  $X = (x_0, \dots, x_\ell)$  satisfying

$$X \in \mathbb{Z}_{>0}^{\ell+1}$$
 and  $\min\{x_i\} = 0$ .

• The inverse map  $\phi_{\Lambda}^{-1}: P_{cl,k}^+(\Lambda) \to \max^+(\Lambda)$  of  $\phi_{\Lambda}$  is given by

$$\phi_{\Lambda}^{-1}(\Lambda') = \Lambda - \sum_{i \in I} x_i \alpha_i,$$

where X is the unique solution of  $AX^t = Y_{\Lambda'}^t$  as above.

# Proposition (Ariki-Song-W. 2023)

• The linear equation  $AX^t = Y_{\Lambda'}^t$  has a unique solution  $X = (x_0, \dots, x_\ell)$  satisfying

$$X \in \mathbb{Z}_{\geq 0}^{\ell+1}$$
 and  $\min\{x_i\} = 0$ .

• The inverse map  $\phi_{\Lambda}^{-1}: P_{cl,k}^+(\Lambda) \to \max^+(\Lambda)$  of  $\phi_{\Lambda}$  is given by

$$\phi_{\Lambda}^{-1}(\Lambda') = \Lambda - \sum_{i \in I} x_i \alpha_i,$$

where X is the unique solution of  $AX^t = Y^t_{\Lambda'}$  as above.

Set 
$$\beta_{\Lambda'} := \sum_{i \in I} x_i \alpha_i$$
. Then,

$$\mathsf{max}^+(\Lambda) = \left\{ \Lambda - \beta_{\Lambda'} \mid \Lambda' \in P^+_{\mathit{cl},k}(\Lambda) \right\}.$$

# Strategy to prove the results

If  $\Lambda - \beta$  lies in the W-orbit of  $P(\Lambda)$ , then

KLR algebras

0000000000000000

$$\Lambda - \beta \in \{\Lambda - \beta_{\Lambda'} - m\delta \mid \Lambda' \in P^+_{cl,k}(\Lambda), m \in \mathbb{Z}_{\geq 0}\}.$$

Thus, we only need to consider  $R^{\Lambda}(\beta)$  for  $\beta = \beta_{\Lambda'} + m\delta$  with  $\Lambda' \in P_{cl,k}^+(\Lambda)$  and  $m \in \mathbb{Z}_{\geq 0}$ .

# Strategy to prove the results

If  $\Lambda - \beta$  lies in the W-orbit of  $P(\Lambda)$ , then

$$\Lambda - \beta \in \{\Lambda - \beta_{\Lambda'} - m\delta \mid \Lambda' \in P_{cl,k}^+(\Lambda), m \in \mathbb{Z}_{\geq 0}\}.$$

Thus, we only need to consider  $R^{\Lambda}(\beta)$  for  $\beta = \beta_{\Lambda'} + m\delta$  with  $\Lambda' \in P^+_{cl,k}(\Lambda)$  and  $m \in \mathbb{Z}_{\geq 0}$ .

**Step 1:** We show that  $R^{\Lambda}(\beta_{\Lambda'} + m\delta)$  is wild for all  $m \geq 1$  if  $\beta_{\Lambda'} \neq 0$  and  $R^{\Lambda}(m\delta)$  is wild for all  $m \geq 2$ , by using some new reduction theorems.

(If  $R^{\Lambda}(\gamma)$  is not wild, we set  $\gamma \in \mathcal{NW}(\Lambda) \cup \{\delta\}$ .)

**Step 2**: We determine the representation type of  $R^{\Lambda}(\gamma)$  for  $\gamma \in \mathcal{T}(\Lambda) \cup \{\delta\}$ , via case-by-case consideration.

(A systematic approach developed by Ariki and his collaborators is well applied to find the quiver presentation of  $R^{\Lambda}(\gamma)$ .)

**Step 2**: We determine the representation type of  $R^{\Lambda}(\gamma)$  for  $\gamma \in \mathcal{T}(\Lambda) \cup \{\delta\}$ , via case-by-case consideration.

(A systematic approach developed by Ariki and his collaborators is well applied to find the quiver presentation of  $R^{\Lambda}(\gamma)$ .)

**Step 3:** We show that

$$\mathcal{NW}(\Lambda) \subset \mathcal{T}(\Lambda)$$

via case-by-case consideration on small k (i.e., k = 3, 4, 5, 6) and via induction on k > 7.

# Structure of $P_{cl,k}^+(\Lambda)$

Maximal weights

(in type  $A_\ell^{(1)}$ )

Recall that

$$\mathsf{max}^+(\Lambda) = \left\{ \Lambda - \beta_{\Lambda'} \mid \Lambda' \in P^+_{\mathit{cl},k}(\Lambda) \right\}.$$

e.g.,  $P_{cl,3}^+(\Lambda_0 + \Lambda_3 + \Lambda_6)$  with  $\ell = 6$  consists of  $\Lambda_0 + \Lambda_3 + \Lambda_6$ ,  $\Lambda_1 + \Lambda_2 + \Lambda_6$ ,  $\Lambda_1 + \Lambda_3 + \Lambda_5$ ,  $\Lambda_0 + \Lambda_4 + \Lambda_5$ ,  $\Lambda_2 + \Lambda_3 + \Lambda_4$ , etc.

For any  $\Lambda' \in P^+_{cl,k}(\Lambda)$  with  $k \geq 2$ , we can write  $\Lambda' = \Lambda_i + \Lambda_j + \tilde{\Lambda}$  for some  $i, j \in I$  and  $\tilde{\Lambda} \in P^+_{cl,k-2}$ . Then, we define

$$\Lambda'_{i,j} := \Lambda_{i-1} + \Lambda_{j+1} + \tilde{\Lambda}.$$

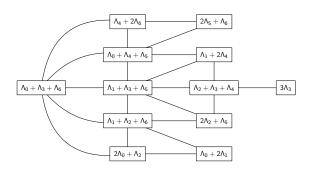
Note that  $\Lambda'_{i,j} = \Lambda'$  if and only if  $j \equiv_e i - 1$ .

#### Definition 3.1

Let  $C(\Lambda)$  be an undirected graph, where we draw an edge between  $\Lambda'$  and  $\Lambda''$  if  $\Lambda'' = \Lambda'_{i,i}$  for some  $i, j \in I$  with  $j \not\equiv_e i - 1$ .

Maximal weights 000000000

e.g.,  $C(\Lambda_0 + \Lambda_3 + \Lambda_6)$  with  $\ell = 6$  is displayed as follows.

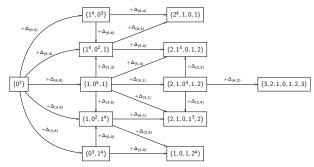


We define

$$\Delta_{i,j} = \left\{ \begin{array}{ll} (0^i, 1^{j-i+1}, 0^{\ell-j}) & \text{if } i \leq j, \\ (1^{j+1}, 0^{i-j-1}, 1^{\ell-i+1}) & \text{if } i > j. \end{array} \right.$$

Maximal weights 0000000000

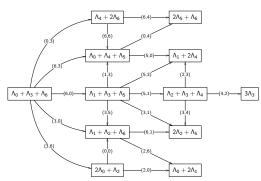
The unique solution of  $AX^t = Y_{\Lambda'}^t$  is given by  $\min(X_{\Lambda'} + \Delta_{i,j}) = 0$ . e.g.,



#### Definition 3.2

Let  $\vec{C}(\Lambda)$  be the quiver where we set  $\Lambda' \to \Lambda''$  if  $X_{\Lambda''} = X_{\Lambda'} + \Delta_{i,j}$ . We label this arrow by (i,j).

e.g.,  $\vec{C}(\Lambda_0 + \Lambda_3 + \Lambda_6)$  with  $\ell = 6$  is displayed as



For any  $\Lambda' \in P^+_{cl,k}(\Lambda)$  with  $\Lambda' \neq \Lambda$ , there is a directed path from  $\Lambda$ to  $\Lambda'$  in  $\vec{C}(\Lambda)$ . In particular,  $\vec{C}(\Lambda)$  is a finite-connected quiver.

For any  $\Lambda' \in P_{cl,k}^+(\Lambda)$  with  $\Lambda' \neq \Lambda$ , there is a directed path from  $\Lambda$ to  $\Lambda'$  in  $\vec{C}(\Lambda)$ . In particular,  $\vec{C}(\Lambda)$  is a finite-connected quiver.

Maximal weights

## Proposition 3.4

Suppose  $\Lambda = \bar{\Lambda} + \tilde{\Lambda}$ . Then, there is a directed path

$$\Lambda^{(1)} \xrightarrow{\quad (i_1,j_1) \quad} \Lambda^{(2)} \xrightarrow{\quad (i_2,j_2) \quad} \dots \xrightarrow{\quad (i_{m-1},j_{m-1}) \quad} \Lambda^{(m)} \in \vec{C}(\bar{\Lambda})$$

if and only if there is a directed path

$$\Lambda^{(1)} + \tilde{\Lambda} \xrightarrow{(i_1,j_1)} \Lambda^{(2)} + \tilde{\Lambda} \xrightarrow{(i_2,j_2)} \dots \xrightarrow{(i_{m-1},j_{m-1})} \Lambda^{(m)} + \tilde{\Lambda} \in \vec{C}(\Lambda).$$

#### Lemma 3.5

Suppose that there is an arrow  $\Lambda' \xrightarrow{(i,j)} \Lambda''$  in  $\vec{C}(\Lambda)$ . If  $R^{\Lambda}(\beta_{\Lambda'})$  is representation-infinite (resp. wild), then so is  $R^{\Lambda}(\beta_{\Lambda''})$ .

#### Lemma 3.5

Suppose that there is an arrow  $\Lambda' \xrightarrow{(i,j)} \Lambda''$  in  $\vec{C}(\Lambda)$ . If  $R^{\Lambda}(\beta_{\Lambda'})$  is representation-infinite (resp. wild), then so is  $R^{\Lambda}(\beta_{\Lambda''})$ .

#### Lemma 3.6

Write  $\Lambda = \bar{\Lambda} + \tilde{\Lambda}$ . If  $R^{\bar{\Lambda}}(\beta)$  is representation-infinite (resp. wild), then  $R^{\Lambda}(\beta)$  is representation-infinite (resp. wild).

Set  $i_0 := i_h$ ,  $i_{h+1} := i_1$  and write

$$\Lambda = m_{i_1}\Lambda_{i_1} + \cdots + m_{i_j}\Lambda_{i_j} + m_{i_{j+1}}\Lambda_{i_{j+1}} + \cdots + m_{i_h}\Lambda_{i_h}$$

# Rep-finite and tame sets

Maximal weights 00000000000

Set  $i_0 := i_h$ ,  $i_{h+1} := i_1$  and write

$$\Lambda = m_{i_1}\Lambda_{i_1} + \cdots + m_{i_j}\Lambda_{i_j} + m_{i_{j+1}}\Lambda_{i_{j+1}} + \cdots + m_{i_h}\Lambda_{i_h}$$

For any 1 < i < h, we define

$$\begin{split} F(\Lambda)_0 &:= \left\{ \Lambda_{i_j,i_j} \mid m_{i_j} = 2 \right\} \\ F(\Lambda)_1 &:= \left\{ \Lambda_{i_j,i_{j+1}} \mid m_{i_j} = 1, m_{i_{j+1}} = 1 \right\} \\ T(\Lambda)_1 &:= \left\{ \Lambda_{i_j,i_{j+1}} \mid m_{i_j} = 1, m_{i_{j+1}} > 1 \text{ or } m_{i_j} > 1, m_{i_{j+1}} = 1 \right\} \\ T(\Lambda)_2 &:= \left\{ (\Lambda_{i_j,i_j})_{i_j-1,i_j+1} \mid m_{i_j} = 2, i_{j-1} \not\equiv_e i_j - 1, i_{j+1} \not\equiv_e i_j + 1 \right\} \text{ if } \operatorname{char} K \neq 2 \\ T(\Lambda)_3 &:= \left\{ (\Lambda_{i_j,i_j})_{i_j,i_j+1 \text{ or } i_j-1,i_j} \mid m_{i_j} = 3, i_{j+1} \not\equiv_e i_j + 1 \text{ or } i_{j-1} \not\equiv_e i_j - 1 \right\} \text{ if } \operatorname{char} K \neq 3 \\ T(\Lambda)_4 &:= \left\{ (\Lambda_{i_j,i_j})_{i_j,i_j} \mid m_{i_j} = 4 \right\} \text{ if } \operatorname{char} K \neq 2 \\ T(\Lambda)_5 &:= \left\{ (\Lambda_{i_j,i_j})_{i_p,i_p} \mid m_{i_j} = m_{i_p} = 2, i_p \not\equiv_e i_j \pm 1, j \neq p \right\} \end{split}$$

Set

$$\mathfrak{F}(\Lambda) = \{\beta_{\Lambda'} \mid \Lambda' \in \{\Lambda\} \cup F(\Lambda)_0 \cup F(\Lambda)_1\},$$
$$\mathfrak{T}(\Lambda) = \{\beta_{\Lambda'} \mid \Lambda' \in \cup_{1 \le j \le 5} T(\Lambda)_j\}.$$

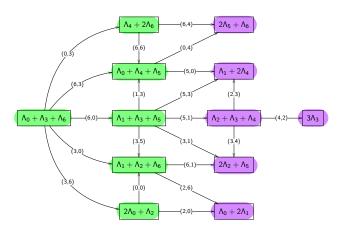
Maximal weights

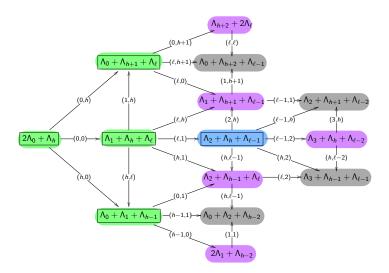
## Theorem 3.7 (Ariki-Song-W. 2023)

Suppose le( $\Lambda$ )  $\geq$  3. Then,  $R^{\Lambda}(\beta)$  is representation-finite if  $\beta \in \mathcal{F}(\Lambda)$ , tame if one of the following holds:

- $\beta = \delta$ ,  $\Lambda = k\Lambda_i$ ,  $\ell = 1$  with  $t \neq \pm 2$ ,
- $\beta = \delta$ ,  $\Lambda = k\Lambda_i$ ,  $\ell \ge 2$  with  $t \ne (-1)^{\ell+1}$ ,
- $\beta \in \mathfrak{T}(\Lambda)$ .

Otherwise, it is wild.





## References

- [A17] S. Ariki, Representation type for block algebras of Hecke algebras of classical type. *Adv. Math.* **317** (2017), 823–845.
- [AP16] S. Ariki and E. Park, Representation type of finite quiver Hecke algebras of type  $D_{\ell+1}^{(2)}$ . Trans. Amer. Math. Soc. **368** (2016), 3211–3242.
- [KK12] S.-J. Kang and M. Kashiwara, Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras. *Invent. Math.* 190 (3) (2012), 699–742.
- [KOO20] Young-Hun Kim, se-jin Oh and Young-Tak Oh, Cyclic sieving phenomenon on dominant maximal weights over affine Kac-Moody algebras. Adv. Math. 374 (2020), 107336.

- [R08] R. Rouquier, 2-Kac-Moody algebras. Preprint (2008), arXiv: 0812.5023.
- [S06] A. Skowroński, Selfinjective algebras: finite and tame type, Trends in Representation Theory of Algebras and Related Topics, 169–238, Contemp. Math. Amer. Math. Soc. 406, 2006.

# Thank you! Any questions?

```
Tools 

Bound quiver algebras;
Representation of quivers;
Representation type: rep-finite, tame, wild;
Brauer tree/graph algebras.
```

Objects  $\begin{cases} \text{Symmetric groups and Hecke algebras;} \\ \text{Lie theoretic data and Cartan datum;} \\ \text{Quiver Hecke algebras;} \\ \text{Cyclotomic KLR algebras;} \\ \text{max}^+(\Lambda) \text{ and } P^+_{cl,k}(\Lambda); \\ \text{Rep-finite and tame sets.} \end{cases}$ 

