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We start with Quiver Representation Theory.

Quivers:

(@]

COHoQ’OHOHO’ >o*>o,

(¢]

A quiver representation:

Vi—tev,—Eo vy,

We may study quiver rep’s algebraically or geometrically.



Introduction
00@0000

A quiver representation:
vi—tsv, -5 vy,

® Algebraic viewpoint:

® Geometric viewpoint:
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A quiver representation:
vi—tsv, -5 vy,

e Algebraic viewpoint: to find all indecomposable rep's.

e.g., the above example has 6 indecomposable rep’s:

K—%-0-"-0 K—2ts-k—"50
0—2-k—2.90 0—2-k—1ok
0—2-0- %k Kk-1.k-1.k

where K is a field (algebraically closed).

® Geometric viewpoint:
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A quiver representation:
vi—tsv, -5 vy,

e Algebraic viewpoint: to find all indecomposable rep's.

e.g., the above example has 6 indecomposable rep’s:

K—%-0-"-0 K—2ts-k—"50
0—2-k—2.90 0—2-k—1ok
0—2-0- %k Kk-1.k-1.k

where K is a field (algebraically closed).

® Geometric viewpoint: to fix all vector spaces V; and change
matrices f, g. This gives an affine module variety.
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Algebraic Representation Theory

Any (basic, connected) algebra A over K is isomorphic to a bound
quiver algebra KQ/I.
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Algebraic Representation Theory

Any (basic, connected) algebra A over K is isomorphic to a bound
quiver algebra KQ/I.

An algebra A is said to be
e rep-finite if the number of indecomposable rep's is finite.

e tame if it is not rep-finite, but all indecomposable rep's can be
organized in a one-parameter family in each dimension.

Otherwise, A is called wild.
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Algebraic Representation Theory

Any (basic, connected) algebra A over K is isomorphic to a bound
quiver algebra KQ/I.

An algebra A is said to be
e rep-finite if the number of indecomposable rep's is finite.

e tame if it is not rep-finite, but all indecomposable rep's can be
organized in a one-parameter family in each dimension.

Otherwise, A is called wild.

Theorem (Drozd 1977)

The representation type of any algebra (over K) is exactly one of
rep-finite, tame and wild.
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Example: tame algebras

e.g., o ——= o is tame. Indecomposable rep's:

1 1
dimension 2: K—=K K—=K
0 A
(1,0) (1,0)*
dimension 3: K2—=K K—=K?
(0,1) (0,1)*
/2 12
dimension 4: K2 —= K? K2 —= K2
J2(0) J2(N)
[/n,0]
Kn+1 — K" Kn Kn

[O:1n] In(X)
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Example: wild algebras

N [}
e.g., o———=o. Indecomposable rep's:
~— 7

(1,0)
dimension 3: K222

K a=(\pu)
(0.1)

Impossible! to give a complete classification of indecomposable
rep's for a wild algebra.
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Some examples related to Hecke algebras.

L4 rep—finite: e.g., Brauer tree algebras

® tame: e.g., Brauer graph algebras

° wild:

References
000
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KLR algebras in affine type A
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Hecke algebras of type A

The symmetric group &, (= permutation group of {1,2,--- n}) is
generated by {s; = (i,i+1) |1 <i<n—1} subject to

s?=1,(e (si+1)(si— 1) =0)

SiSj = SjSj if|i—j’7£1, Si5jSj = SjSiSj if’i—j‘ = 1.
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Hecke algebras of type A

The symmetric group &, (= permutation group of {1,2,--- n}) is
generated by {s; = (i,i+1) |1 <i<n—1} subject to

s?=1,(e (si+1)(si— 1) =0)
SiSj = SjSj if‘i—j’#l, Si5jSj = SjSiSj if’i—j‘ = 1.
The Iwahori-Hecke algebra H(&,,) is the Z[q, g ]-algebra
generated by {T; | 1 </ < n— 1} subject to
T2=(g- 1T+ a.(= (T + (T~ ) =0)

TiT,="T;T;if|i—j|#1, T;T;T;=T;T;T; if |i —j| = 1.
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More Hecke algebras
In the last fifty years, the representation theory of symmetric groups
had a close connection with Lie theory via categorification.
e Hecke algebras of Coxeter groups, i.e., of type B, D, E, etc.

¢ Cyclotomic Hecke algebras (a.k.a. Ariki-Koike algebras). See
[Ariki-Koike, 1994], [Broue-Malle, 1993], and [Cherednik 1987].

¢ Cyclotomic quiver Hecke algebras (a.k.a. Cyclotomic KLR
algebras). See [Khovanov-Lauda, 2009] and [Rouquier, 2008].
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Many classes of algebras arise in this process, whose representation
type is completely determined, in particular, for

(1) Hecke alg's in type ABD (Ariki, 2000);

(2) Cyclotomic quiver Hecke alg's of level 1 in affine type ACD
(Ariki-lijima-Park 2014, 2015); of level 2 in affine type A (Ariki 2017);

(3) Schur/g-Schur/Borel-Schur/infinitesimal-Schur alg’s (xi 1993,
Erdmann 1993, Doty-Erdmann-Martin 1999, Erdmann-Nakano 2001, etc);

(4) block alg's of category O; (Futorny-Nakano-Pollack 1999, Boe-Nakano
2005, etc)
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Many classes of algebras arise in this process, whose representation

type is completely determined, in particular, for

(1) Hecke alg's in type ABD (Ariki, 2000);

(2) Cyclotomic quiver Hecke alg's of level 1 in affine type ACD
(Ariki-lijima-Park 2014, 2015); of level 2 in affine type A (Ariki 2017);
of level k in affine type A (Ariki-Song-W. 2023);

(3) Schur/g-Schur/Borel-Schur/infinitesimal-Schur alg’s (xi 1993,
Erdmann 1993, Doty-Erdmann-Martin 1999, Erdmann-Nakano 2001, etc);

(4) block alg's of category O; (Futorny-Nakano-Pollack 1999, Boe-Nakano
2005, etc)
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Lie theoretic data

Let / ={0,1,...,¢} be an index set. Recall that

1 14
e o e . .

Cz(l):O:;l e=—/

+8M, DM, 4D AR | p@

) (1) (1) (1) ~1) £(2) 3
20 A1 Z+17Eé ):E7( )758( ):Fi ), G2( ),Eé ),Di ).



Introduction KLR algebras Maximal weights References
0000000 000080000000 00000 00000000000 000

Lie theoretic data

Let / ={0,1,...,¢} be an index set. Recall that

1 14
e o e . .

Cz(l):O:;l e=—/

+8M, DM, 4D AR | p@

) (1) (1) (1) ~1) £(2) 3
20 A1 Z+17Eé ):E7( )758( ):Fi ), G2( ),Eé ),Di ).

Set njj 1= #(i — j).
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Lie theoretic data

Let / ={0,1,...,¢} be an index set. Recall that

1 14
e o e . .

Cz(l):O:;l e=—/
1 1 2 2 2 1 1 1 1 1 2 3
80,0 A, A, 02, £, Y, £, Y, 69, £, Y

Set njj := #(i — j). We define the Cartan matrix A = (ajj)i jcs by

—njj if njj > nj;
ajj = 2, ajj = -1 if ni < nji (i 7&_])
—njj — nji otherwise
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Let (A, P,M, PV, M) be the Cartan datum in type A?), where
* P= @fzo ZN; & Z6 is the weight lattice;
e NN={a;|i€l} C P is the set of simple roots;
e PV =Hom(P,Z) is the coweight lattice;
e NV ={h;|i€l} CPYis the set of simple coroots.

The null root is § = ag + a1 + ... + ap. We have
<h,‘,0¢j> = ajj, <h,‘,/\j> = (5,‘j for all i,j cl.

We set PT := {/\ epP ’ <h,,/\> S Zzo,ie I}
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A family of polynomials in type A

Fixte Kif{=1and0#te Kifl>2.

For i,j € I, we take Q;j(u,v) € K[u, v] such that Q; ;(u,v) =0,
Qij(u,v) = Qji(v,u) and if £ > 2,

Qiiti(u,v)=u+vif0<i<l/,
Qeo(u, v) = u+ tv,
Qijlu,v)=11if j#ei,i+1.

If £ =1, we take Qo 1(u,v) = u? + tuv + v2.
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Quiver Hecke algebras

The quiver Hecke algebra R(n) associated with (Q;j(u,v))ijer is
the Z-graded k-algebra generated by

{e() |v=(vi,va,...,vp) € 1"} {xi |1 <i<n},{¢j|1<j<n—1},

subject to the following relations:

(1) e()e() = dorev), Soeme) =1, xix; = xixi, xie(v) = e(v)x.
(2) wie(v) = e(si(w))ei, wiyj = ey if |i — j| > L.
(3) vPe(v) = Quupn (xi xi11)e(v).
(4)

—e(v) ifj=iandv;=vjy,

4) (wix — x, Gvie) = { e(v) if j=i+1and v; =vj1,

0 otherwise.

Qujvipg (XisXir1) = Qupwiyg (Xit2Xi41) e(v)

(5) (Yir1¥iiz1 — Yiiravi)e(v) = { Xi—Xi+2 i = Ui

0 otherwise.
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Cyclotomic quiver Hecke algebras

Fix A € P*. The cyclotomic quiver Hecke algebra R(n) w.r.t. Ais
defined as the quotient of R(n) modulo the relation

th”“/\)e(u) = 0.
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Cyclotomic quiver Hecke algebras

Fix A € P*. The cyclotomic quiver Hecke algebra R(n) w.r.t. Ais
defined as the quotient of R(n) modulo the relation

xfhyl’A)e(u) = 0.

Here, RN(n) is a finite-dimensional symmetric algebra proved by
Shan-Varagnolo-Vasserot in 2017.
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Cyclotomic quiver Hecke algebras

Fix A € P*. The cyclotomic quiver Hecke algebra R(n) w.r.t. Ais
defined as the quotient of R(n) modulo the relation

xfhyl’A)e(u) = 0.

Here, RN(n) is a finite-dimensional symmetric algebra proved by
Shan-Varagnolo-Vasserot in 2017.

Let Qy = ) ¢/ Z>oc;. For each g € Q; with 3] = n, we define
RN(B) = e(B)R(n)e(B),

where e(8) = 3" e(v) with 1# — {V — (v v) €17 Sy = ﬁ}.
i=1

velb
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An example
Set A = kAo, ¢ = 2. Then, | ={0,1,2} and R(3) is generated by

{6‘(000), Ty, E‘(012)7 Ty, E‘(212)7 e }, {Xl,XQ,X3}7 {1/)1,1/)2},

subject to the relations.
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An example
Set A = kAo, ¢ = 2. Then, | ={0,1,2} and R(3) is generated by

{£(000), -, e(012),--- , e(212),--- }, {x1, %2, x3}, {¥b1, ¥},

subject to the relations.

Set B = a1 + as + az. Then, RN(B) is generated by
{e(012), e(021), e(102), e(120), e(201), (210) }, {x1, x2, x3 }, {11, 2},

subject to
® ¢(102) = ¢(120) = ¢(201) = e(210) = 0, xfe(012) = xfe(021) = 0;
® 11e(012) = ¢1e(021) = 0, 12e(012) = e(021)1hy;
® x2e(012) = —x1€(012), x2e(021) = —tx1e(021);
® x2e(012) = tx?e(012) + (1 — t)x1x3e(012), etc.
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Known results on cyclotomic KLR algebras

We know the representation type of cyclotomic KLR algebras in the
following cases.

e RN(B3) in type A( ), see [Ariki-Park, 2014].

e RN(B) in type Al ), see [Ariki-lijima-Park, 2015].
e RN(B) in type C(l) see [Ariki-Park, 2015].
RM(3) in type D§+)1, see [Ariki-Park, 2016].
RMNo+As(3) in type Ag , see [Ariki, 2017].

In this talk, we explain the representation type of R(f3) in type
Ay), for arbitrary A € PT.
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Representation type of R"(3)

® Rickard's result tells us that two symmetric algebras have the
same representation type if they are derived equivalent.
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Representation type of R"(3)

® Rickard's result tells us that two symmetric algebras have the
same representation type if they are derived equivalent.

e Chuang and Rouquier's result tells us that R(3) and RN(5)
are derived equivalent if A — 8 and A — 3’ lie in the same
W-orbit of the set P(A) of weights of V(A), where W is the
affine symmetric group generated by (for i € /)

S,-2 = ].,S,'Sj = SjS,’ if |I'—j‘ 5_’5@_,_1 1,5,'SjS; = SjS,’Sj if ’I'—_/'| =/¢+1 1.
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Representation type of R"(3)

® Rickard's result tells us that two symmetric algebras have the
same representation type if they are derived equivalent.

e Chuang and Rouquier's result tells us that R(3) and RN(5)
are derived equivalent if A — 8 and A — 3’ lie in the same
W-orbit of the set P(A) of weights of V(A), where W is the
affine symmetric group generated by (for i € /)

S,-2 = ].,S,'Sj = SjS,’ if |I'—j‘ 5_’5@_,_1 1,5,'SjS; = SjS,’Sj if |i—j| =/¢+1 1.
® A weight p € P(A) is maximal if i+ 6 ¢ P(A). We define
max " (A) := {u € P | u is maximal}.

Kac's result tells us that the representatives of W-orbits in
P(A) are given by {yx — mé | u € maxT(A),m € Z>o}.
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max™(A)

We briefly recall the construction in [Kim-Oh-Oh, 2020] as follows.
Set A= a;, Ay + apN\j, + -+ + a;,\i, € PT. We define

le(A\)=> a; and ev(A)=i1+i2+--+in
Suppose le(A) = k. Then,

P,;k(/\) = {/\' € P | le(A) = le(N), ev(A) =p41 ev(N) } .
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max™(A)

We briefly recall the construction in [Kim-Oh-Oh, 2020] as follows.
Set A = a; Ny + apNi, + -+ a;, N\, € PT. We define
le(A\)=> a; and ev(A)=i1+i2+--+in
Suppose le(A) = k. Then,
P,;k(/\) = {N € P" | le(A) = le(N'),ev(A) =11 ev(N) }.
eg., P;7’3(/\0 + A3 + Ng) with £ = 6 consists of Ag + Az + g,

N+ No+Ne, A1 A3+ N5, Ao+ Ag+Ns, Ao+ A3+ Ay, 2Ag + Ao,
Ng + 2Ng, 2N5 + Ng, No + 2A1, 2Ao + A5, A1+ 2A4, 2N\g + Ao, 3A3.
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Theorem (Kim-Oh-Oh 2020)
For any A € P:/_,k’ there is a bijection ¢p : max™(A) — P:?,k(/\)'
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Theorem (Kim-Oh-Oh 2020)
For any A € P:I_,k' there is a bijection ¢p : max™(A) — P:Zk(/\).

Remaining: to obtain the inverse ¢X1.
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Theorem (Kim-Oh-Oh 2020)
For any A € P;Zk, there is a bijection ¢p : max™(A) — 'D:?,k(/\)'

Remaining: to obtain the inverse ¢R1.

Recall that <h,’,/\j> = 6’] We define y; := <h,‘,/\ - /\/> and

Y/\’ = (yo,yl, e ,yg) S ZZJrl.
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Theorem (Kim-Oh-Oh 2020)
For any A € P;Zk, there is a bijection ¢p : max™(A) — 'D:?,k(/\)'

Remaining: to obtain the inverse ¢X1.

Recall that <h,’,/\j> = 6’] We define y; := <h,‘,/\ - /\/> and
= (yo,yl, . ,yg) S ZZJrl.

Then, we consider the linear equation AX* = Y.
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Proposition (Ariki-Song-W. 2023)

e The linear equation AX® = Y}, has a unique solution
X = (xo,. .., x¢) satisfying

X e Zé‘%l and min{x;} = 0.
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Proposition (Ariki-Song-W. 2023)

® The linear equation AX* = Y/, has a unique solution
X = (xo,. .., x¢) satisfying

X e Z“l and min{x;} = 0.
® The inverse map (;SX PC, (N) = maxT(A) of ¢, is given by
¢X1(N) =N=2 e xiai,

where X is the unique solution of AX* = Y}, as above.
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Proposition (Ariki-Song-W. 2023)

® The linear equation AX® = Y}, has a unique solution
X = (xo,. .., x¢) satisfying

X e ng}l and min{x;} = 0.
® The inverse map gZ)Xl . P:?,k(/\) — maxT(A) of ¢, is given by
Pat(N) =N~ el Xictis
where X is the unique solution of AX* = Y}, as above.

Set B = Zielx,-a,-. Then,

max™(A) = {/\ _Bn|Ne Pjvk(/\)} .
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Strategy to prove the results

If A— 3 lies in the W-orbit of P(A), then
AN=Be{N=Pn—ms|NePj (N, me Zso}.

Thus, we only need to consider RM(3) for 8 = fBpr + md with
N e Pj,’k(/\) and m € Z>o.
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Strategy to prove the results

If A— 3 lies in the W-orbit of P(A), then
AN=Be{N=Pn—ms|NePj (N, me Zso}.

Thus, we only need to consider RM(3) for 8 = fBpr + md with
N e Pj,’k(/\) and m € Z>o.

Step 1: We show that RN(By + mé) is wild for all m > 1 if
Bar # 0 and RN(mé) is wild for all m > 2, by using some new
reduction theorems.

(If RM(7) is not wild, we set v € NW(A) U {5}.)
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Step 2: We determine the representation type of R"(~) for
~v € T(N)U{d}, via case-by-case consideration.

(A systematic approach developed by Ariki and his collaborators is
well applied to find the quiver presentation of R(7).)
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Step 2: We determine the representation type of R"(~) for
~v € T(N)U{d}, via case-by-case consideration.

(A systematic approach developed by Ariki and his collaborators is
well applied to find the quiver presentation of R(7).)

Step 3: We show that
NW(A) C T(N)

via case-by-case consideration on small k (i.e., k =3,4,5,6) and
via induction on k > 7.
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Structure of P (A)

(in type A§1))
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Recall that
max™(A) = {/\ “Bn|Ne PC+,7k(/\)} .

e.g., P:73(/\0 + A3 + Ng) with £ = 6 consists of Ag + A3z + g,
AN+ N+ Ne, At + A3+ A, Ag+ Aa+ As, Ao+ A3 + A4, etc.

For any A" € P}, (A) with k > 2, we can write A = A; + A; + A
for some i,j €l and A € P 5. Then, we define

Niji=N1+N1 + A.

Note that A} ; = A" if and only if j =. i — 1.
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Definition 3.1
Let C(A) be an undirected graph, where we draw an edge between
N and A" if N = N, ; for some i,j € | with j # i —1.

e.g., C(Ao + A3 + Ng) with ¢ = 6 is displayed as follows.

Mo+ As + As }—‘ /\1+2/\4‘

‘/\0+/\3+/\5 }—{ A+ As+As }—{ Ao+ As+ g

A+ A2+ A }—‘ 2/\2+/\5‘
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We define

(07, =+1 of)) if i <,

Bid = (U, 0 1) s,

References

The unique solution of AX® = Y/, is given by min(Xy + A; ;) = 0.

e.g.,

4 (3,2,1,0,1,2,3)
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Definition 3.2
Let C(A) be the quiver where we set A" — A" if Xpv = Xp + A .

We label this arrow by (i, ).

e.g., 5(/\0 + A3 + Ng) with £ =6 is displayed as

ﬁﬁ 0.4,
of ( (04
/ /}‘ Mo+ /\4+/\5 so)—x{ A+ 20 ‘

(1 3) (5.3) (23)

‘/\o+/\3+/\5 Feo—{n+ /\3+/\5 o re+ s+ }—(42)—-

(3. 5) (3.1) (3l4)
\){Al /\2+A5 61— 20 + s |
(3.6)
(U 0) (26)
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Proposition 3.3
For any A" € P, (A) with A’ # A, there is a directed path from A
to A’ in C(A). In particular, C(A) is a finite-connected quiver.
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Proposition 3.3
For any A" € P, (A) with A’ # A, there is a directed path from A
to A’ in C(A). In particular, C(A) is a finite-connected quiver.

Proposition 3.4
Suppose A = A + A. Then, there is a directed path

A ) ey (k) (nadn) amy e C(A)

if and only if there is a directed path

A | A (i1.1) A® 4R (i2.2) (im—14m-1) A LR E C(/\)
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Key Lemmas

Lemma 3.5 N
Suppose that there is an arrow A’ M N in 6(/\) If RMNBa) is
representation-infinite (resp. wild), then so is RM(Ban).
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Key Lemmas

Lemma 3.5 N
Suppose that there is an arrow A’ M N in 6(/\) If RMNBa) is
representation-infinite (resp. wild), then so is RM(Ban).

Lemma 3.6 )
Write A = A + A. If RN(B) is representation-infinite (resp. wild),
then R7(f) is representation-infinite (resp. wild).
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Rep-finite and tame sets

Set ip := ip, ipr1 = i1 and write

AszlAi1+"'+m/inj+mij+1/\ +"'+mih/\ih

li+1
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Rep-finite and tame sets

Set iy := ip, Iht1 =0 and write
A= IT'I,'I/\,'1 + -+ m,]/\,] =+ m,'j+1/\,'j+1 + -+ m,-h/\,-h

For any 1 < j < h, we define

F(A)o :={Aji | mj =2}

F(N)1 = {Nj iy | mjy =1,m;, =1}

T(N)g = {/\,} " | mp=1,m;, >lorm>1m = 1}

T(N)2 = {(Npi)i—vi+1 | miy = 2,051 Fe ij — 1, j41 Fe iy + 1}if char K #2
T(N)z = {(Nii))ini+1 or j—1,i; | My =3, 0141 Ze fj+ L or [y #e ij — 1}if char K # 3
T(AN)a ={(Nii))ii | mj; =4}if charK #2

T(N)s = {(Nii)ipsip | miy = mi, = 2,p #e fj+1,j # p}
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Set
F(A) = {Bn | N € {A}UF(A)o U F(A)1},

T(A) = {Bn | N € U1<j<s T(N);}.

Theorem 3.7 (Ariki-Song-W. 2023)

Suppose le(A) > 3. Then, R/\(ﬁ) is representation-finite if
B € F(N), tame if one of the following holds:

e =0, N=kA; £ =1with t # +2,
® 3=26,N=k~A;, £>2with t # (-1)1,
e e T(N).

Otherwise, it is wild.
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e.g., rep-type of 5(/\0 + A3 + Ng) with £ = 6 is displayed as

(6.6) (0,4)
(0,3)
(1 3) (5.3) (2 3)

Ao+ s+ s %(eo o n /\3 +hs | At /\3 + A %(42)

\ (3‘5) (3.1) (3‘#‘)
AL+ N+ Aﬁ (6,1)
(36)

(0.0) (2,6),
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e.g., rep-type of 6(2/\0 + Ap) is displayed as
0,h+1

u)
/ \(lo) (1,h+1)
/(o,h) ) * (-1

(270 + An|—©0—[A1 + Ay + A \ — (t-12)
\

(h.1)

References
000
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Thank you! Any questions?

Bound quiver algebras;

Representation of quivers;

Tools ) o )
Representation type: rep-finite, tame, wild;

Brauer tree/graph algebras.

(Symmetric groups and Hecke algebras;
Lie theoretic data and Cartan datum;

Quiver Hecke algebras;

Objects
) Cyclotomic KLR algebras; /qb

max*(A) and P, (N);
Rep-finite and tame sets.




