τ -tilting theory

Symmetric algebras

References

On $\tau\text{-tilting}$ finiteness of symmetric algebras

Qi WANG Yau Mathematical Sciences Center Tsinghua University

ALTReT2023, May 14, 2023

 $\substack{\tau\text{-tilting theory}\\00000000}$

Symmetric algebras

References

Introduction

 $\tau\text{-tilting theory}$

Symmetric algebras

References

 $\tau\text{-tilting theory}\\ 00000000$

Symmetric algebras

References

Introduction

References

Symmetric algebras

Symmetric algebra: $A \cong D(A)$ as A-A-bimodule.

- K: an algebraically closed field
- $D(-) = \operatorname{Hom}_{\mathcal{K}}(-, \mathcal{K}) : \operatorname{mod} A \longrightarrow \operatorname{mod} A^{\operatorname{op}}$

Some examples:

- (1) Group algebras of finite groups;
- (2) Brauer tree/graph/configuration algebras;
- (3) Hecke algebras associated with Coxeter groups;
- (4) Trivial extension $T(A) = A \ltimes D(A)$ of an algebra A.

References

Representation type of algebras

Theorem 1.1 (Drozd, 1977)

The representation type of any algebra (over K) is exactly one of rep-finite, tame and wild.

An algebra A is said to be

- rep-finite if the set of indecomposable modules is finite.
- tame if it is not finite, but all indecomposable modules are organized in a one-parameter family in each dimension.

Otherwise, A is called wild.

References

Some examples of symmetric algebras:

• rep-finite: e.g., Brauer tree algebras

• tame: e.g., Brauer graph algebras

• wild: e.g., trivial extensions of wild hereditary algebras

Impossible! to give a complete classification of indecomposable modules for wild algebras.

 $\substack{\tau - \text{tilting theory}\\00000000}$

Symmetric algebras

References

τ -tilting finiteness

Part of motivations

To capture some finite property in wild cases.

A brick *M* of *A* provided $\operatorname{End}_A(M) \simeq K$.

References

$\tau\text{-tilting finiteness}$

Part of motivations

To capture some finite property in wild cases.

- A brick M of A provided $\operatorname{End}_A(M) \simeq K$. Then, A is called
- (1) (Chindris-Kinser-Weyman, 2012) **Schur-representation-finite** if there are finitely many bricks of a fixed dimension.
- (2) (Demonet-Iyama-Jasso, 2016) τ -tilting finite if there are finitely many bricks.

References

$\tau\text{-tilting finiteness}$

Part of motivations

To capture some finite property in wild cases.

- A brick M of A provided $\operatorname{End}_A(M) \simeq K$. Then, A is called
- (1) (Chindris-Kinser-Weyman, 2012) **Schur-representation-finite** if there are finitely many bricks of a fixed dimension.
- (2) (Demonet-Iyama-Jasso, 2016) τ -tilting finite if there are finitely many bricks.
 - (2) \Rightarrow (1) is obvious.
 - (1) \Rightarrow (2) is not verified; no counterexample.

 $\substack{\tau - \text{tilting theory}\\00000000}$

Symmetric algebras

References

Wild, but τ -tilting finite

e.g., set $\Lambda = KQ/I$ with

$$Q: \alpha \bigcap 1 \xrightarrow{\mu} 2 \bigcap \beta$$
$$I = \left\langle \alpha^2, \beta^2, \mu\nu\mu, \nu\mu\nu, \alpha\mu - \mu\beta, \beta\nu - \nu\alpha \right\rangle$$

The indecomposable projective A-modules are

then Λ is a wild symmetric algebra. But, it has only 4 bricks.

 $\substack{\tau \text{-tilting theory}\\00000000}$

Symmetric algebras

References

Derived equivalence

- A is Morita equivalent to $B \Leftrightarrow \operatorname{mod} A \simeq \operatorname{mod} B$
- A is Derived equivalent to $B \Leftrightarrow D^{\mathrm{b}}(\operatorname{mod} A) \simeq D^{\mathrm{b}}(\operatorname{mod} B)$

References

Derived equivalence

- A is Morita equivalent to $B \Leftrightarrow \operatorname{mod} A \simeq \operatorname{mod} B$
- A is Derived equivalent to $B \Leftrightarrow \mathsf{D}^{\mathrm{b}}(\mathsf{mod}\,A) \simeq \mathsf{D}^{\mathrm{b}}(\mathsf{mod}\,B)$

Theorem 1.2 (Rickard, 1991)

If A is symmetric and $A \simeq_d B$, then B is also symmetric.

References

Derived equivalence

- A is Morita equivalent to $B \Leftrightarrow \operatorname{mod} A \simeq \operatorname{mod} B$
- A is Derived equivalent to $B \Leftrightarrow \mathsf{D}^{\mathrm{b}}(\mathsf{mod}\,A) \simeq \mathsf{D}^{\mathrm{b}}(\mathsf{mod}\,B)$

Theorem 1.2 (Rickard, 1991)

If A is symmetric and $A \simeq_d B$, then B is also symmetric.

Theorem 1.3 (Krause, 1997)

If A is symmetric with property $(*) \in \{\text{rep-finite, tame, wild}\}\)$ and $A \simeq_d B$, then B also admits (*).

References

Derived equivalence

- A is Morita equivalent to $B \Leftrightarrow \operatorname{mod} A \simeq \operatorname{mod} B$
- A is Derived equivalent to $B \Leftrightarrow \mathsf{D}^{\mathrm{b}}(\mathsf{mod}\,A) \simeq \mathsf{D}^{\mathrm{b}}(\mathsf{mod}\,B)$

Theorem 1.2 (Rickard, 1991)

If A is symmetric and $A \simeq_d B$, then B is also symmetric.

Theorem 1.3 (Krause, 1997)

If A is symmetric with property $(*) \in \{\text{rep-finite, tame, wild}\}\$ and $A \simeq_d B$, then B also admits (*).

Question: Let $A \simeq_d B$ be two symmetric algebras. Then,

A is τ -tilting finite \Leftrightarrow B is τ -tilting finite ?

In general, derived equivalence will not preserve $\tau\text{-tilting}$ finiteness. e.g.,

 τ -tilting theory

Symmetric algebras

References

$\tau\text{-tilting theory}$

References

 τ -tilting theory was introduced by Adachi, Iyama and Reiten in 2014, as a completion to the classical tilting theory.

So far, τ -tilting theory is related to several different aspects in Representation Theory of Algebras:

- Categorical objects, such as torsion classes, silting complexes;
- Combinatorial objects, such as bricks, semibricks;
- Lattice theory, such as the lattice of torsion classes;
- Geometric objects, such as the modern Brauer-Thrall conjecture.

References

Auslander-Reiten translation

- $(-)^* = \operatorname{Hom}_A(-, A)$: proj $A \longleftrightarrow$ proj A^{op}
- the Nakayama functor $u = D(-)^*$: proj A o inj A

For an A-module M with a minimal projective presentation

$$P_1 \stackrel{d_1}{\longrightarrow} P_0 \stackrel{d_0}{\longrightarrow} M \longrightarrow 0,$$

the Auslander-Reiten translation τM is defined by the following exact sequence

$$0 \longrightarrow \tau M \longrightarrow \nu P_1 \xrightarrow{\nu d_1} \nu P_0.$$

• |*M*|: the number of isomorphism classes of indecomposable direct summands of *M*

Definition 1.1 (Adachi-Iyama-Reiten, 2014)

Let M be a right A-module. Then,

- (1) *M* is called τ -rigid if Hom_A(*M*, τ *M*) = 0.
- (2) *M* is called τ -tilting if *M* is τ -rigid and |M| = |A|.
- (3) *M* is called support τ -tilting if there exists an idempotent *e* of *A* such that *M* is a τ -tilting (*A*/*AeA*)-module.

An algebra A is called τ -tilting finite if the set s τ -tilt A is finite.

References

Mutation

Reminder: $T_1 \oplus \ldots \oplus T_j \oplus \ldots \oplus T_n \Rightarrow T_1 \oplus \ldots \oplus T_j^* \oplus \ldots \oplus T_n$.

For $M, N \in s\tau$ -tilt A, we say $M \ge N$ if $Fac(N) \subseteq Fac(M)$.

• Fac(*M*): the full subcategory whose objects are factor modules of finite direct sums of copies of *M*

Definition 1.2 (Adachi-Iyama-Reiten, 2014)

For $M, N \in s\tau$ -tilt A, the following conditions are equivalent.

- N is a left mutation of M.
- *M* is a right mutation of *N*.
- M > N and there is no $T \in s\tau$ -tilt A such that M > T > N.

 $\substack{\tau\text{-tilting theory}\\00000\bullet00}$

Symmetric algebras

References

Connection with bricks

- brick A: the set of (iso. classes of) bricks in mod A
- fbrick A: the set of bricks M satisfying the condition that the smallest torsion class T(M) containing M is functorially finite.

Theorem 1.3 (Demonet-Iyama-Jasso, 2016)

There exists a bijection between $i\tau$ -rigid A and fbrick A given by

 $X \mapsto X/\mathsf{rad}_B(X)$,

where $B := \text{End}_A(X)$. In τ -tilting finite case, brick A = fbrick A.

Remark: each indecomposable τ -rigid module is a direct summand of some (support) τ -tilting modules.

 τ -tilting theory

Symmetric algebras

References

Reduction theorems

Proposition 1.4 (Demonet-Iyama-Jasso, 2016)

If A is τ -tilting finite, then

(1) A/I is τ -tilting finite for any two-sided ideal I of A.

(2) eAe is τ -tilting finite for any idempotent e of A.

References

Reduction theorems

Proposition 1.4 (Demonet-Iyama-Jasso, 2016)
If A is τ-tilting finite, then
(1) A/I is τ-tilting finite for any two-sided ideal I of A.
(2) eAe is τ-tilting finite for any idempotent e of A.

Recall that $T(A) = A \ltimes D(A)$ is the trivial extension of A. Corollary 1.5 If A is τ -tilting infinite, then so is T(A). τ -tilting theory 0000000

Symmetric algebras

References

Brauer graph algebras

Let A be a Brauer graph algebra with Brauer graph Γ_A .

• Γ_A is called bipartite if every cycle in Γ_A has an even length

References

Brauer graph algebras

Let A be a Brauer graph algebra with Brauer graph Γ_A .

• Γ_A is called bipartite if every cycle in Γ_A has an even length

Theorem 1.6 (Adachi-Aihara-Chan, 2018)

A is τ -tilting finite if and only if Γ_A contains at most one odd cycle and no even cycle.

References

Brauer graph algebras

Let A be a Brauer graph algebra with Brauer graph Γ_A .

• Γ_A is called bipartite if every cycle in Γ_A has an even length

Theorem 1.6 (Adachi-Aihara-Chan, 2018)

A is τ -tilting finite if and only if Γ_A contains at most one odd cycle and no even cycle.

Theorem 1.7 (Opper-Zvonareva, 2022)

 $A \simeq_d B$ if and only if the following conditions hold.

- (1) Γ_A and Γ_B share the same number of vertices, edges, faces,
- (2) the multisets of multiplicities and the multisets of perimeters of faces of Γ_A and Γ_B coincide,
- (3) either both or none of Γ_A and Γ_B are bipartite.

 $\substack{\tau\text{-tilting theory}\\00000000}$

Symmetric algebras

References

Symmetric algebras

Tame algebras have the following hierarchy:

Tame algebras have the following hierarchy:

Theorem 3.1 (Krause-Zwar, 2000)

If A is symmetric with $(*) \in \{D, PG\}$ and $A \simeq_d B$, then B also admits (*).

Symmetric algebras of polynomial growth

	S	Cartan matrix	Morita equivalence	Derived equivalence	Class
			trivial extensions of	$T(p,q), T(2,2,r)^*,$	
		singular	Euclidean algebras	T(3,3,3), T(2,4,4),	(1)
				T(2, 3, 6)	
D			$\Lambda(T, v_1, v_2), \Lambda'(T),$		
		non-singular	$\Gamma^{(0)}(T,v),\Gamma^{(1)}(T,v),$	$A(p,q), \Lambda(m), \Gamma(n)$	(2)
			$\Gamma^{(2)}(T, v_1, v_2)$		
	×	non-singular	$\Omega(T)$	$\Omega(n)$	(3)
		cingular	trivial extensions of	trivial extensions of	(4)
PC	0	Singular	tubular algebras	canonical tubular algebras	(4)
10		non-singular	$\{A_i \mid i = 1, 2, \dots, 16\}$	$\{A_i \mid i = 1, 2, 3, 4, 5, 12\}$	(5)
	×	non-singular	$\{\Lambda_i \mid i=1,2,\ldots,9\}$	$\{\Lambda_i \mid i = 1, 3, 4, 9\}$	(6)

- Standard: A admits a Galois covering with some conditions;
- Cartan matrix: $C_A = (c_{ij})$ with $c_{ij} := \dim \operatorname{Hom}_A(P_i, P_j)$.

Symmetric algebras of polynomial growth

	S	Cartan matrix	Morita equivalence	Derived equivalence	Class
			trivial extensions of	$T(p,q), T(2,2,r)^*,$	
		singular	Euclidean algebras	T(3,3,3), T(2,4,4),	(1)
				T(2, 3, 6)	
D			$\Lambda(T, v_1, v_2), \Lambda'(T),$		
		non-singular	$\Gamma^{(0)}(T,v),\Gamma^{(1)}(T,v),$	$A(p,q), \Lambda(m), \Gamma(n)$	(2)
			$\Gamma^{(2)}(T, v_1, v_2)$		
	×	non-singular	$\Omega(T)$	$\Omega(n)$	(3)
		cingular	trivial extensions of	trivial extensions of	(4)
PC	0	Singular	tubular algebras	canonical tubular algebras	(4)
10		non-singular	$\{A_i \mid i = 1, 2, \dots, 16\}$	$\{A_i \mid i = 1, 2, 3, 4, 5, 12\}$	(5)
	×	non-singular	$\{\Lambda_i\mid i=1,2,\ldots,9\}$	$\{\Lambda_i \mid i = 1, 3, 4, 9\}$	(6)

- Standard: A admits a Galois covering with some conditions;
- Cartan matrix: $C_A = (c_{ij})$ with $c_{ij} := \dim \operatorname{Hom}_A(P_i, P_j)$.

 τ -tilting theory

Symmetric algebras

References

Class (1): τ -tilting infinite

A Euclidean algebra is defined to be a representation-infinite tilted algebra of extended Dynkin types.

Lemma 3.2 (Zito, 2020)

A tilted algebra is τ -tilting finite if and only if it is rep-finite.

Proposition 3.3

All algebras in Class (1) are τ -tilting infinite.

Symmetric algebras of polynomial growth

	S	Cartan matrix	Morita equivalence	Derived equivalence	Class
			trivial extensions of	$T(p,q), T(2,2,r)^*,$	
		singular	Euclidean algebras	T(3,3,3), T(2,4,4),	(1)
				T(2, 3, 6)	
D			$\Lambda(T, v_1, v_2), \Lambda'(T),$		
		non-singular	$\Gamma^{(0)}(T,v),\Gamma^{(1)}(T,v),$	$A(p,q), \Lambda(m), \Gamma(n)$	(2)
			$\Gamma^{(2)}(T, v_1, v_2)$		
	×	non-singular	$\Omega(T)$	$\Omega(n)$	(3)
		cingular	trivial extensions of	trivial extensions of	(4)
PC	0	Singular	tubular algebras	canonical tubular algebras	(4)
10		non-singular	$\{A_i \mid i = 1, 2, \dots, 16\}$	$\{A_i \mid i = 1, 2, 3, 4, 5, 12\}$	(5)
	×	non-singular	$\{\Lambda_i\mid i=1,2,\ldots,9\}$	$\{\Lambda_i \mid i = 1, 3, 4, 9\}$	(6)

- Standard: A admits a Galois covering with some conditions;
- Cartan matrix: $C_A = (c_{ij})$ with $c_{ij} := \dim \operatorname{Hom}_A(P_i, P_j)$.

 τ -tilting theory

Symmetric algebras

References

Classes (2) and (3): τ -tilting finite

 $A(p,q), \Lambda(m), \Gamma(n), \Omega(n)$: Brauer graph algebras. e.g.,

Remark $A(p,q), \Lambda(m), \Gamma(n), \Omega(n)$ are τ -tilting finite.

Proposition 3.4

All algebras in Classes (2) and (3) are τ -tilting finite.

Symmetric algebras of polynomial growth

	S	Cartan matrix	Morita equivalence	Derived equivalence	Class
			trivial extensions of	$T(p,q), T(2,2,r)^*,$	
		singular	Euclidean algebras	T(3,3,3), T(2,4,4),	(1)
				T(2, 3, 6)	
D			$\Lambda(T, v_1, v_2), \Lambda'(T),$		
		non-singular	$\Gamma^{(0)}(T,v),\Gamma^{(1)}(T,v),$	$A(p,q), \Lambda(m), \Gamma(n)$	(2)
			$\Gamma^{(2)}(T, v_1, v_2)$		
	×	non-singular	$\Omega(T)$	$\Omega(n)$	(3)
		cingular	trivial extensions of	trivial extensions of	(4)
PC	0	Singular	tubular algebras	canonical tubular algebras	(4)
10		non-singular	$\{A_i \mid i = 1, 2, \dots, 16\}$	$\{A_i \mid i = 1, 2, 3, 4, 5, 12\}$	(5)
	×	non-singular	$\{\Lambda_i\mid i=1,2,\ldots,9\}$	$\{\Lambda_i \mid i = 1, 3, 4, 9\}$	(6)

- Standard: A admits a Galois covering with some conditions;
- Cartan matrix: $C_A = (c_{ij})$ with $c_{ij} := \dim \operatorname{Hom}_A(P_i, P_j)$.

 τ -tilting theory

Symmetric algebras

References

Class (4): τ -tilting infinite

Tubular algebras are representation-infinite simply connected algebras. e.g., the tubular algebra C(p, q, r) with $p \leq q \leq r$ is defined by the quiver

bounded by $\alpha_1 \alpha_2 \cdots \alpha_p + \beta_1 \beta_2 \cdots \beta_q + \gamma_1 \gamma_2 \cdots \gamma_r = 0.$

Lemma 3.5 (W. 2019)

A simply connected algebra is τ -tilting finite \Leftrightarrow it is rep-finite.

Proposition 3.6

All algebras in Class (4) are τ -tilting infinite.

Symmetric algebras of polynomial growth

	S	Cartan matrix	Morita equivalence	Derived equivalence	Class
			trivial extensions of	$T(p,q), T(2,2,r)^*,$	
		singular	Euclidean algebras	T(3,3,3), T(2,4,4),	(1)
				T(2, 3, 6)	
D			$\Lambda(T, v_1, v_2), \Lambda'(T),$		
		non-singular	$\Gamma^{(0)}(T,v),\Gamma^{(1)}(T,v),$	$A(p,q), \Lambda(m), \Gamma(n)$	(2)
			$\Gamma^{(2)}(T, v_1, v_2)$		
	×	non-singular	$\Omega(T)$	$\Omega(n)$	(3)
		cingular	trivial extensions of	trivial extensions of	(4)
PC	0	Singular	tubular algebras	canonical tubular algebras	(4)
10		non-singular	$\{A_i \mid i = 1, 2, \dots, 16\}$	$\{A_i \mid i = 1, 2, 3, 4, 5, 12\}$	(5)
	×	non-singular	$\{\Lambda_i\mid i=1,2,\ldots,9\}$	$\{\Lambda_i \mid i = 1, 3, 4, 9\}$	(6)

- Standard: A admits a Galois covering with some conditions;
- Cartan matrix: $C_A = (c_{ij})$ with $c_{ij} := \dim \operatorname{Hom}_A(P_i, P_j)$.

 τ -tilting theory

Symmetric algebras

References

Classes (5) and (6): τ -tilting finite

We check the τ -tilting finiteness of A_i and Λ_i by direct calculation.

$A_1(\lambda)$	A	$\frac{1}{2}(\lambda)$	A	3	,	44	A ₅	A ₆	A7		A ₈
24		6	19	2	1	32	8	8	108		100
A ₉	A	A ₁₀	A	11	4	A ₁₂	A ₁₃	A ₁₄	A ₁₅		A ₁₆
108	1	.16	10	0		32	28	32	30		30
Λ ₁	Λ_2	Λ ₃ (λ)	٨	4	Λ ₅	Λ_6	Λ ₇	Λ ₈		٨9
8	8	6		3	2	28	32	30	30	1	.92

Lemma 3.7 (Adachi-Iyama-Reiten, 2014)

If the Hasse quiver $\mathcal{H}(s\tau\text{-tilt }A)$ contains a finite connected component Δ , then $\mathcal{H}(s\tau\text{-tilt }A) = \Delta$.

τ -tilting theory

Symmetric algebras

References

e.g., the Hasse quiver of $s\tau$ -tilt A_{13} :

Proposition 3.8

All algebras in Classes (5) and (6) are τ -tilting finite.

 $\substack{\tau-\text{tilting theory}\\00000000}$

Symmetric algebras

References

Main Result

Theorem 3.9 (Aihara-Honma-Miyamoto-W. 2020, Miyamoto-W. 2022)

Let $A \simeq_d B$ be two symmetric algebras of polynomial growth. Then, A is τ -tilting finite if and only if B is τ -tilting finite.

References

Main Result

Theorem 3.9 (Aihara-Honma-Miyamoto-W. 2020, Miyamoto-W. 2022)

Let $A \simeq_d B$ be two symmetric algebras of polynomial growth. Then, A is τ -tilting finite if and only if B is τ -tilting finite.

Still open:

wild

References

References

- [AAC] T. Adachi, T. Aihara and A. Chan, Classification of two-term tilting complexes over Brauer graph algebras, *Math. Z.*, **290** (2018), no. 2, 1–36.
- [AIR] T. Adachi, O. Iyama and I. Reiten, τ -tilting theory. Compos. Math. 150 (2014), no. 3, 415–452.
- [DIJ] L. Demonet, O. Iyama and G. Jasso, τ -tilting finite algebras, bricks and g-vectors. *Int. Math. Res. Not.* (2017), pp. 1–41.
- [S] A. Skowroński, Selfinjective algebras: finite and tame type, Trends in Representation Theory of Algebras and Related Topics, Contemp. Math. 406, Amer. Math. Soc., 2006.

 τ -tilting theory

Symmetric algebras

References

Thank you! Any questions?

Tools $\begin{cases} \text{Representation type: finite, tame, wild;} \\ \text{Morita and Derived equivalences;} \\ \tau\text{-tilting finiteness.} \end{cases}$

Objects Symmetric algebras; Brauer graph algebras; Titled and simply connected algebras.

How? { Quotient and idempotent truncation; Trivial extensions; Mutation and mutation graph.

