Osaka University Knowledge Archive

Title	On τ-tilting finiteness of several finite- dimensional algebras
Author(s)	王, 起
Citation	
Issue Date	
Text Version	ETD
URL	https://doi.org/10.18910/88159
DOI	$10.18910 / 88159$
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir.library.osaka-u.ac.jp/
Osaka University

On τ-tilting finiteness of several finite-dimensional algebras

Submitted to
Graduate School of Information Science and Technology
Osaka University

December 2021

Qi WANG

Papers and Presentations

Papers related to this thesis

- Q. Wang, On τ-tilting finiteness of the Schur algebra, Journal of Pure and Applied Algebra, (2022), https://doi.org/10.1016/j.jpaa.2021.106818.
- Q. Wang, τ-tilting finiteness of two-point algebras I, Mathematical Journal of Okayama University, 64 (2022), 117-141, http://doi.org/10.18926/mjou/62799.
- Q. Wang, On τ-tilting finite simply connected algebras, (2019), arXiv:1910.01937.

Presentations

- Q. Wang, On τ-tilting finiteness of Schur algebras, Algebraic Lie Theory and Representation Theory 2021, online, June 27, 2021.
- Q. Wang, On τ-tilting finiteness of Schur algebras, Seminar of Department of Mathematical Sciences, Tsinghua University, online, December 2, 2020.
- Q. Wang, On τ-tilting finiteness of Schur algebras, OIST Representation Theory Seminar, online, November 17, 2020.
- Q. Wang, On τ-tilting finite simply connected algebras, The 16 th Chinese National Conference on Lie Algebra and Lie Theory, Qingdao, China, July 15, 2019.
- Q. Wang, τ-tilting finiteness of two-point algebras, Algebraic Lie Theory and Representation Theory 2019, Ito, Japan, May 24, 2019.
- Q. Wang, τ-tilting finiteness of two-point algebras, Seminar of Department of Mathematics, East China Normal University, Shanghai, China, March 20, 2019.
- Q. Wang, τ-tilting finiteness of two-point algebras, Seminar of School of Mathematical Sciences, Tongji University, Shanghai, China, March 19, 2019.

Abstract

In this thesis, we discuss the τ-tilting finiteness for three classes of finite-dimensional algebras over an algebraically closed field.

First, we consider the class of two-point algebras. We completely determine the τ-tilting finiteness for minimal wild two-point algebras. Based on this complete classification, we are able to determine the τ-tilting finiteness for some tame two-point algebras.

Second, we consider the class of simply connected algebras. We show that a simply connected algebra is τ-tilting finite if and only if it is representation-finite. We also show that the τ-tilting finiteness of non-sincere algebras can be reduced to that of sincere algebras. Then, by combining these new results with some previous results of other scholars, we can get a complete list of τ-tilting finite sincere simply connected algebras. Moreover, we can determine the τ-tilting finiteness for several related algebras, such as tubular algebras, hypercritical algebras, and locally hereditary algebras.

Last, we consider the class of (classical) Schur algebras. Here, we do not consider the τ-tilting finiteness blockwise even though some block algebras of Schur algebras are discussed. We determine the τ-tilting finiteness of Schur algebras except for a few small cases ${ }^{1}$. In particular, the τ-tilting finiteness of Schur algebras is completely determined if we consider an algebraically closed field of characteristic 3 in this thesis. This is a fundamental effort toward the τ-tilting finiteness of q-Schur algebras, infinitesimal Schur algebras and so on.

[^0]
Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor, Professor Susumu Ariki, who led me into this research area and provided continuous support for my Ph.D. study. I am honored to be his student. His patient guidance helped me in all the time of research and writing of this thesis. I am also very grateful to him for providing much help in my daily life in Japan.

I want to thank Prof. Takuma Aihara, Prof. Ryoichi Kase and Kengo Miyamoto for giving me many valuable suggestions on my research. In particular, I will never forget that Kengo Miyamoto spent much time teaching me the basic knowledge of τ-tilting theory. Without his help, my research would not go so smoothly.

I am also grateful to my master's supervisor, Prof. Yunchuan Yin, for teaching me mathematics and encouraging me to study abroad. Many thanks to him for his help in both academic and daily life during my master's degree.

I would like to mention my sincere thanks to Prof. Toshiaki Shoji. Without his recommendation, I could not imagine studying at Osaka University and I could not become a student of Prof. Ariki.

I would like to thank Toshitaka Aoki, Sota Asai, Aaron Chan, Yingying Zhang and Zhiping Zhou for their many valuable discussions. I want to thank Yohei Wakamaki, who is a doctoral student in the same research room as me, for helping me check the grammar of this thesis. I also want to thank the office staff of the Department of Pure and Applied Mathematics. Especially, I owe Ms. Satomi Yamawaki many thanks for giving me much help during the first year I came to Osaka University.

Lastly, it is worth mentioning that this research is partially supported by the Japan Society for the Promotion of Science 20J10492 since April 2020.

Contents

1 Introduction 11
1.1 Background 11
1.2 The subject of this thesis 13
2 Preliminaries 17
$2.1 \quad \tau$-tilting theory 19
2.2 Silting theory 21
$2.3 \quad \tau$-tilting finite algebras 24
2.4 Tilting theory and derived equivalence 30
3 Algebras With Two Simple Modules 31
3.1 A small set of two-point algebras 32
3.2 Minimal wild two-point algebras 38
3.3 Other applications 41
4 Simply Connected Algebras 45
4.1 Basic definitions 46
4.1.1 Tits form 49
4.1.2 Critical algebras 50
$4.2 \quad$ Simply connected algebras 52
4.2.1 Some applications 54
4.3 Algebras with rectangle or triangle quiver 56
4.3.1 Staircase algebras 56
4.3.2 Shifted-staircase algebras 58
5 Schur Algebras 63
5.1 Symmetric groups and Schur algebras 64
5.1.1 Permutation modules 65
5.1.2 Specht modules and Young modules 66
5.1.3 Reduction theorems on Schur algebras 69
5.1.4 \quad Strategy on τ-tilting infinite Schur algebras 70
5.2 Representation-finite and tame Schur algebras 71
5.2.1 Representation-finite blocks 72
5.2.2 Tame Schur algebras 72
5.3 Wild Schur algebras 75
5.3.1 The characteristic $p=2$ 76
5.3.2 The characteristic $p=3$ 84
5.3.3 The characteristic $p \geqslant 5$ 86
5.3.4 The remaining cases 88
A 89
A. 1 Table T and Table W 89
A. 2 Supporting materials of Example 2.3.9 91
A. 3 Supporting materials of Example [2.3.10 100
A. 4 Supporting materials of Lemma 5.2 .3 102
A. 5 Supporting materials of Proposition 5.3.1 103
Bibliography 105

Chapter 1

Introduction

1.1 Background

Tilting theory originated from the research of Bernštein, Gelfand and Ponomarev BGP] in 1973, in which the well-known BGP-reflection functor was introduced and was aimed to construct equivalences between module categories of finite-dimensional algebras. Then, the insights of [BGP] quickly attracted the attention of mathematicians. After decades of development, tilting theory is now considered not only as one of the main tools in the representation theory of finite-dimensional algebras, but also an essential tool in the study of many areas of mathematics. In particular, Rickard Ric proved that tilting theory is a necessary ingredient for constructing derived equivalence of finite-dimensional algebras over an algebraically closed field.

The crucial concept in tilting theory is the notion of tilting modules, which was first considered by Auslander, Platzeck and Reiten APR, and was axiomatized by Brenner and Butler [BB]. One of the essential properties of tilting modules is the so-called mutations. Very roughly speaking, it can be explained as follows. Let $T=T_{1} \oplus \cdots \oplus T_{j} \oplus \cdots \oplus T_{n}$ ($T_{i} \neq T_{j}$ if $i \neq j$) be an object in a subclass \mathcal{C} of an additive category. If we can replace a direct summand T_{j} by $T_{j}^{*}\left(\not \not T_{j}\right)$ via a certain procedure to get a new object $\mu_{j}(T):=\left(T / T_{j}\right) \oplus T_{j}^{*}$, so that $\mu_{j}(T)$ also lies in \mathcal{C}, then $\mu_{j}(T)$ is called the mutation of T with respect to T_{j}. From this perspective, it is known that the mutation at an indecomposable direct summand of tilting modules is not always possible.

Starting from 2014, τ-tilting theory introduced by Adachi, Iyama and Reiten AIR has drawn more and more attention. Here, τ is the Auslander-Reiten translation.

Definition. Let A be a finite-dimensional algebra over an algebraically closed field K. A right A-module M is called support τ-tilting if $\operatorname{Hom}_{B}(M, \tau M)=0$ and $|M|=|B|$ taking over $B:=A / A(1-e) A$, namely, e is an idempotent of A such that the direct summands of $e A /(\operatorname{erad} A)$ are exactly the composition factors of M. Here, rad A is the Jacobson radical of A. Moreover, a support τ-tilting module M is called τ-tilting if $B=A$.

A support τ-tilting module can be regarded as a generalization of tilting modules from the viewpoint of mutation, that is, the mutation at an indecomposable direct summand of support τ-tilting modules is always possible. Therefore, τ-tilting theory is an evolved form of tilting theory and has many better properties. Several mathematicians have shown that τ-tilting theory is closely related to many areas of mathematics, including categorical, combinatorial representation theory and geometric representation theory. In particular, support τ-tilting modules are in bijection with other objects, such as two-term silting complexes, functorially finite torsion classes, cluster-tilting objects, left finite semibricks and so on. We refer to [AIR] and Asa for more details.

Let A be a finite-dimensional algebra over an algebraically closed field K. We recall that A is called representation-finite if A has only finitely many isomorphism classes of indecomposable A-modules. Otherwise, we say that A is representation-infinite. For example, if $A:=K \Delta$ is a path algebra of a finite quiver Δ, then A is representation-finite precisely when the underlying graph of Δ is a disjoint union of Dynkin diagrams of type $\mathbb{A}_{n}, \mathbb{D}_{n}, \mathbb{E}_{6}, \mathbb{E}_{7}$ and \mathbb{E}_{8}. This is the so-called Gabriel's theorem due to Peter Gabriel.

Similar to the representation-finiteness, a modern notion named τ-tilting finiteness is introduced by Demonet, Iyama and Jasso [DIJ] in 2015.

Definition. A finite-dimensional algebra A over an algebraically closed field K is called τ-tilting finite if there are only finitely many pairwise non-isomorphic basic τ-tilting A-modules. Otherwise, A is said to be τ-tilting infinite.

For the examples of τ-tilting finite algebras, one can immediately find that representationfinite algebras are τ-tilting finite. Besides, local algebras, i.e., algebras with only one simple module, are known to be τ-tilting finite. However, it is not easy to check whether a representation-infinite algebra is τ-tilting finite or not, such that the following question attracts our attention.

Question. Let A be a representation-infinite algebra over an algebraically closed field K. Is there a way to check the τ-tilting finiteness of A ?

It is worth mentioning that the τ-tilting finiteness for several classes of algebras has been determined, such as algebras with radical square zero Ad1, preprojective algebras of Dynkin type [Mi], Brauer graph algebras (AAC], biserial algebras [M0 and so on. In particular, it has been proved in some cases that τ-tilting finiteness coincides with representation-finiteness, including gentle algebras [Pl], cycle-finite algebras [MS], tilted and cluster-tilted algebras [Zi], quasi-tilted algebras [AHMW] and so on.

According to the currently known results, we have a characterization for the τ-tilting finiteness of path algebras, which is similar to Gabriel's theorem. We present this characterization here and one can find a proof in Remark 4.2.2. If $A=K \Delta$ is a path algebra of a finite quiver Δ, then A is τ-tilting finite if and only if the underlying graph of Δ is a disjoint union of Dynkin diagrams of type $\mathbb{A}_{n}, \mathbb{D}_{n}, \mathbb{E}_{6}, \mathbb{E}_{7}$ and \mathbb{E}_{8}.

1.2 The subject of this thesis

We always assume that A is an associative unital finite-dimensional algebra over an algebraically closed field K. If A is an indecomposable algebra, then A is also assumed to be basic. Without loss of generality, such an algebra A is isomorphic to a bound quiver algebra $K Q / I$, where $K Q$ is the path algebra of the Gabriel quiver $Q=Q_{A}$ of A and I is an admissible ideal of $K Q$. In fact, $K Q / I$ gives a complete representation theoretical description of A : the number of vertices in Q is just the number of simple A-modules, the arrows and loops in Q together with the ideal I encode the structure of indecomposable projective (injective) A-modules, and many other properties of A can be read off.

We recall that the Kronecker algebra $K(\circ \longrightarrow 0$) is τ-tilting infinite (see Lemma 3.1.1 for a proof) and this is actually well-known. If Q has multiple arrows, namely, there exist at least two arrows which share the source and the target, then $A \simeq K Q / I$ is τ-tilting infinite for any admissible ideal I, because A admits $K(\circ \longrightarrow 0)$ as a quotient algebra (see Proposition 2.3.5).

We also notice that local algebras, i.e., algebras with only one simple module, are always τ-tilting finite. Indeed, let B be a local algebra. If a B-module M satisfies $\tau M \neq 0$, then there exists a non-zero map $M \rightarrow \operatorname{soc} \tau M$, so that M is τ-tilting if and only if $M=B$. This motivates the study of two-point algebras, which we will consider in Chapter 3. In fact, the τ-tilting finiteness of minimal wild two-point algebras is completely determined, where A is called minimal wild if A is wild but any proper quotient of A is not. We find that most of minimal wild two-point algebras are τ-tilting finite.

In the process of studying two-point algebras, the main variables depend on loops and oriented cycles. Thus, we want to see what happens if $A \simeq K Q / I$ does not have multiple arrows, loops and oriented cycles, but has many vertices. As the first example of such algebras, we may consider triangle quiver and rectangle quiver as follows.

Triangle quiver

Rectangle quiver

In these examples, the algebra $A \simeq K Q / I$ is presented by a triangle or rectangle quiver Q and an two-sided ideal I generated by all possible commutativity relations (depicted by dotted lines). Here, a commutativity relation stands for the equality $w_{1}=w_{2}$ of two different paths w_{1} and w_{2} having the same source and target.

This motivates the study of simply connected algebras, which is a rather large class of algebras and contains triangle and rectangle quivers as special cases. We deal with simply connected algebras in Chapter 4. We show that a simply connected algebra is τ-tilting finite if and only if it is representation-finite. Moreover, we recall that an algebra A is called sincere if there exists an indecomposable A-module M such that all simple A-modules appear in M as composition factors. Otherwise, A is called non-sincere. Regarding the algebras with many vertices, we show that the τ-tilting finiteness of non-sincere algebras can be reduced to that of sincere algebras. Based on this, we get a complete list of τ-tilting finite sincere simply connected algebras.

We now explain the structure of this thesis. The main results of each chapter are also mentioned here. In Chapter 2, we review the background of the representation theory of finite-dimensional algebras and the basic definitions in τ-tilting theory. Then, we describe in detail how τ-tilting theory and silting theory are related to each other. Several reduction theorems on τ-tilting finiteness of algebras are also presented in this chapter.

In Chapter 3, we completely determine the τ-tilting finiteness of minimal wild two-point algebras. Also, by using this result, we can determine the τ-tilting finiteness for several other two-point algebras. The main result in this chapter is the following.

Main Theorem 1 (Theorem 3.2.3). Let W_{i} be a minimal wild two-point algebra from Table W (see Appendix A.1). Then,
(1) W_{1}, W_{2}, W_{3} and W_{5} are τ-tilting infinite.
(2) W_{4} and $W_{6} \sim W_{34}$ are τ-tilting finite.

In Chapter 4, we prove that τ-tilting finiteness coincides with representation-finiteness in the class of simply connected algebras. We also determine the τ-tilting finiteness for several related algebras, such as tubular algebras, hypercritical algebras and locally hereditary algebras. The main results in this chapter are presented as follows.

Main Theorem 2 (Theorem 4.2.3). Let A be a simply connected algebra. Then, A is τ-tilting finite if and only if it is representation-finite.

Main Theorem 3 (Theorem 4.2.8). Let $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be a complete set of pairwise orthogonal primitive idempotents of A. If A is non-sincere, then A is τ-tilting finite if and only if $A / A e_{i} A$ is τ-tilting finite for any $1 \leqslant i \leqslant n$.

In Chapter 5 , we determine the τ-tilting finiteness of Schur algebras except for the cases in (\star). These exceptional cases are settled in a joint work with Toshitaka Aoki, see [AW], so that the classification is actually complete. For the convenience of readers, we present the related results in the end of Chapter 5.

$$
(\star)\left\{\begin{array}{l}
p=2, n=2, r=8,17,19 \\
p=2, n=3, r=4 \\
p=2, n \geqslant 5, r=5 \\
p \geqslant 5, n=2, p^{2} \leqslant r \leqslant p^{2}+p-1 .
\end{array}\right.
$$

Let n, r be two positive integers and V an n-dimensional vector space over an algebraically closed field \mathbb{F} of characteristic p. We denote by $V^{\otimes r}$ the r-fold tensor product $V \otimes_{\mathbb{F}} V \otimes_{\mathbb{F}} \cdots \otimes_{\mathbb{F}} V$. Then, the symmetric group G_{r} has a natural action (by permutation) on $V^{\otimes r}$ which makes it a module over the group algebra $\mathbb{F} G_{r}$ of G_{r}. Then, the endomorphism ring $\operatorname{End}_{\mathbb{F} G_{r}}\left(V^{\otimes r}\right)$ is called the Schur algebra and we denote it by $S(n, r)$. The main result in Chapter 5 is the following.

Main Theorem 4 (Theorem 5.2.4. Table 5.1, Table 5.2. Table 5.3). Except for the cases in (\star), the Schur algebra $S(n, r)$ is τ-tilting finite if and only if one of the following holds.
(1) $p=0$ or $p>r$;
(2) $p=2, n=2,2 \leqslant r \leqslant 7$ or $r=9,11,13,15$;
(3) $p=2, n=3$ or $4, r=2,3,5$;
(4) $p=2, n \geqslant 5, r=2,3$;
(5) $p=3, n=2,3 \leqslant r \leqslant 11$;
(6) $p=3, n=3, r=3,4,5,7,8$;
(7) $p=3, n \geqslant 4, r=3,4,5$;
(8) $p \geqslant 5, n=2, p \leqslant r \leqslant p^{2}-1$;
(9) $p \geqslant 5, n \geqslant 3, p \leqslant r \leqslant 2 p-1$.

In order to prove the above result, we have to check the τ-tilting finiteness for some block algebras of $S(n, r)$. Then, we get the number of pairwise non-isomorphic basic support τ-tilting modules for block algebras of representation-finite and tame Schur algebras. Let $S(n, r)$ be a representation-finite or tame Schur algebra and B an indecomposable block algebra of $S(n, r)$. It is known from [Er] and [DEMN, Section 5] that the block algebra B is Morita equivalent to one of $\mathbb{F}, \mathcal{A}_{m}, \mathcal{D}_{3}, \mathcal{D}_{4}, \mathcal{R}_{4}$ and \mathcal{H}_{4} (see Section 5.2 for the definitions). Then, we have

Main Theorem 5 (Theorem 5.2.2 and Lemma 5.2.3). Let $\mathbf{s} \tau$-tilt B be the set of pairwise non-isomorphic basic support τ-tilting B-modules. Then,

B	\mathcal{A}_{m}	\mathcal{D}_{3}	\mathcal{D}_{4}	\mathcal{R}_{4}	\mathcal{H}_{4}
\#s τ-tilt B	$\binom{2 m}{m}$	28	114	88	96

where $\binom{x}{y}$ is the binomial coefficient.

Chapter 2

Preliminaries

In this chapter, we review the background of the representation theory of finitedimensional algebras and the basic knowledge of quiver representations. We also explain in detail what τ-tilting theory is and the connection between τ-tilting theory and silting theory. In particular, we present several reduction theorems in this chapter.

A finite quiver $Q=\left(Q_{0}, Q_{1}, s, t\right)$ is a quadruple consisting of two finite sets: the vertex set Q_{0} and the arrow set Q_{1}, and two maps: $s, t: Q_{1} \rightarrow Q_{0}$ which associate to each arrow $\alpha \in Q_{1}$ its source $s(\alpha) \in Q_{0}$ and its target $t(\alpha) \in Q_{0}$, respectively. A non-trivial path in Q is a sequence $\alpha_{1} \alpha_{2} \cdots \alpha_{n}(n \geqslant 1)$ of arrows which satisfies $s\left(\alpha_{i+1}\right)=t\left(\alpha_{i}\right)$ with $1 \leqslant i \leqslant n-1$. For a non-trivial path $\alpha_{1} \alpha_{2} \cdots \alpha_{n}$, we set $s\left(\alpha_{1} \alpha_{2} \cdots \alpha_{n}\right):=s\left(\alpha_{1}\right)$ and $t\left(\alpha_{1} \alpha_{2} \cdots \alpha_{n}\right):=t\left(\alpha_{n}\right)$. Then, $\alpha_{1} \alpha_{2} \cdots \alpha_{n}$ is called a cycle when $s\left(\alpha_{1}\right)=t\left(\alpha_{n}\right)$, and $\alpha_{1} \alpha_{2} \cdots \alpha_{n}$ is called a loop when it is a cycle and $n=1$. We denote by e_{i} the trivial path which satisfies $s\left(e_{i}\right)=t\left(e_{i}\right)=i$, for each vertex $i \in Q_{0}$.

Let K be an algebraically closed field. The path algebra $K Q$ is the K-algebra whose basis is given by the set of all paths in Q and such that the multiplication of two paths w_{1}, w_{2} is given by

$$
w_{1} \cdot w_{2}:= \begin{cases}\text { the composition } w_{1} w_{2} & \text { if } t\left(w_{1}\right)=s\left(w_{2}\right) \\ 0 & \text { otherwise }\end{cases}
$$

We call the two-sided ideal of $K Q$ generated by all arrows in Q_{1} the arrow ideal of $K Q$ and denote it by R_{Q}. A two-sided ideal I of $K Q$ is said to be admissible if there exists $m \geqslant 2$ such that $\left(R_{Q}\right)^{m} \subseteq I \subseteq\left(R_{Q}\right)^{2}$. In this case, $K Q / I$ is called a bound quiver algebra.

In this thesis, we always consider an associative finite-dimensional K-algebra A with an identity over an algebraically closed field K. We denote by $A^{\text {op }}$ the opposite algebra of A. We denote by $\bmod A$ the category of finitely generated right A-modules and by proj A (resp., inj A) the category of finitely generated projective (resp., injective) right A-modules. For any $M \in \bmod A$, we denote by $|M|$ the number of isomorphism classes of indecomposable direct summands of M.

We say that two K-algebras A and B are Morita equivalent if their module categories $\bmod A$ and $\bmod B$ are equivalent. Then, any K-algebra A is Morita equivalent to a bound
quiver algebra $K Q / I$, where $K Q$ is the path algebra of the Gabriel quiver $Q=Q_{A}$ of A and I is an admissible ideal of $K Q$. For each vertex $i \in Q$, we denote by e_{i} (same with the trivial path on i) the primitive idempotent of A associated with i, and by S_{i} (resp., P_{i}) the corresponding simple (resp., indecomposable projective) A-module. We often describe A-modules via their composition factors. For example, we denote the simple module S_{i} by i and then, ${ }_{2}^{1}={ }_{S_{2}}^{S_{1}}$ is an indecomposable A-module M with a unique simple submodule S_{2} such that $M / S_{2} \simeq S_{1}$. We refer to ASS for more details.

It is well-known from Drozd's Tame and Wild Theorem Dro that all finite-dimensional algebras A can be divided into two disjoint classes:
(1) A is tame if for any dimension d, there exists a finite number of $K[x]$ - A-bimodules $M_{i}\left(1 \leqslant i \leqslant n_{d}\right)$, which are finitely generated and free as left $K[x]$-modules such that all but finitely many isomorphism classes of indecomposable right A-modules of dimension d, are of the form $K[x] /(x-\omega) \otimes_{K[x]} M_{i}$ with $\omega \in K$ and $i \in\left\{1,2, \ldots, n_{d}\right\}$. More precisely, let $\mu_{A}(d)$ be the least number of $K[x]$ - A-bimodules satisfying the above condition for dimension $d \geqslant 1$. We recall from [Sk3, Section 1.5] that

- A is representation-finite if and only if $\mu_{A}(d)=0$ for any d.
- A is of domestic type if there is a constant C with $\mu_{A}(d) \leqslant C$ for any d.
- A is of polynomial growth type if there are positive integer m and constant C such that $\mu_{A}(d) \leqslant C d^{m}$ for any d.
(2) A is wild if there is a finitely generated $K\langle X, Y\rangle$ - A-bimodule M which is free over $K\langle X, Y\rangle$ and sends non-isomorphic indecomposable $K\langle X, Y\rangle$-modules via the functor $M \otimes_{K\langle X, Y\rangle}$ - to non-isomorphic indecomposable A-modules.

We have the following hierarchy and each of the inclusions is proper. In this thesis, a tame algebra always means a representation-infinite tame algebra.

rep.-finite domestic polynomial growth tame non-polynomial growth

We will need the following definitions.
Definition 2.0.1. Let Λ be a set. A partial order on Λ is a relation \leq such that
(1) (reflexivity) $x \leq x$,
(2) (antisymmetry) $x \leq y$ and $y \leq x$ imply $x=y$,
(3) (transitivity) $x \leq y$ and $y \leq z$ imply $x \leq z$,
for all $x, y, z \in \Lambda$. We call (Λ, \leq) a partially ordered set, or poset for short.

Definition 2.0.2. Let (Λ, \leq) be a poset and $x, y \in \Lambda$. We say that y is covered by x if $y<x$ and there is no $z \in \Lambda$ with $y<z<x$. Then, the Hasse quiver $\mathcal{H}(\Lambda)$ of Λ consists of vertices representing the elements of Λ, and there is a unique arrow $x \rightarrow y$ from x to y if and only if y is covered by x.

Definition 2.0.3 ([B1, Definition 1.3], see also [HR1]). Let A be an algebra. An A-module M is called a tilting module if $|M|=|A|$, $\operatorname{Ext}_{A}^{1}(M, M)=0$ and the projective dimension of M is at most one.

$2.1 \quad \tau$-tilting theory

For any right A-module M, we denote by add (M) (resp., $\operatorname{Fac}(M))$ the full subcategory of $\bmod A$ whose objects are direct summands (resp., factor modules) of finite direct sums of copies of M. In order to give the definition of the Auslander-Reiten translation τ, we first recall the standard K-duality

$$
D:=\operatorname{Hom}_{K}(-, K): \bmod A \longleftrightarrow \bmod A^{\mathrm{op}}
$$

and the A-duality

$$
(-)^{*}:=\operatorname{Hom}_{A}(-, A): \operatorname{proj} A \longleftrightarrow \operatorname{proj} A^{\mathrm{op}}
$$

Then, the Nakayama functor $\nu:=D(-)^{*}$ is defined by the composition of D and $(-)^{*}$. It is well-known that the Nakayama functor ν induces equivalences of two categories

$$
\operatorname{proj} A \underset{\nu^{-1}}{\stackrel{\nu}{\rightleftarrows}} \operatorname{inj} A
$$

where $\nu^{-1}:=\operatorname{Hom}_{A}(D A,-)$ is the quasi-inverse of ν. For any $M \in \bmod A$ with a minimal projective presentation

$$
P^{\prime \prime} \xrightarrow{f_{1}} P^{\prime} \xrightarrow{f_{0}} M \longrightarrow 0,
$$

the Auslander-Reiten translation τM of M is defined by the following exact sequence

$$
0 \longrightarrow \tau M \longrightarrow \nu P^{\prime \prime} \xrightarrow{\nu f_{1}} \nu P^{\prime}
$$

Definition 2.1.1 ([AIR, Definition 0.1]). Let $M \in \bmod A$. Then,
(1) M is called τ-rigid if $\operatorname{Hom}_{A}(M, \tau M)=0$.
(2) M is called τ-tilting if M is τ-rigid and $|M|=|A|$.
(3) M is called support τ-tilting if M is a τ-tilting $(A / A e A)$-module with respect to an idempotent e of A.

Corresponding to support τ-tilting modules, we may define support τ-tilting pairs. For any $M \in \bmod A$ and $P \in \operatorname{proj} A$, the pair (M, P) is called a support τ-tilting pair if M is τ-rigid, $\operatorname{Hom}_{A}(P, M)=0$ and $|M|+|P|=|A|$. Obviously, a pair (M, P) is a support τ-tilting pair if and only if M is a τ-tilting $(A / A e A)$-module and $P=e A$.

We denote by τ-rigid A (resp., $\mathbf{s} \tau$-tilt A) the set of isomorphism classes of indecomposable τ-rigid (resp., basic support τ-tilting) A-modules.

Example 2.1.2. Let $A:=K(1 \underset{\beta}{\stackrel{\alpha}{\longleftrightarrow}} 2) /<\alpha \beta, \beta \alpha>$. We denote by S_{1}, S_{2} the simple A-modules and by P_{1}, P_{2} the indecomposable projective A-modules. One may check that $\tau S_{1}=S_{2}, \tau S_{2}=S_{1}$ and $\tau P_{1}=\tau P_{2}=0$. Then, we have τ-rigid $A=\left\{P_{1}, P_{2}, S_{1}, S_{2}, 0\right\}$ and s τ-tilt $A=\left\{P_{1} \oplus P_{2}, P_{1} \oplus S_{1}, S_{2} \oplus P_{2}, S_{1}, S_{2}, 0\right\}$. In particular, $P_{1} \oplus P_{2}, P_{1} \oplus S_{1}, S_{2} \oplus P_{2}$ are τ-tilting modules and $\left(S_{1}, P_{2}\right),\left(S_{2}, P_{1}\right)$ are support τ-tilting pairs.

We recall the following proposition to illustrate the relation between τ-rigid modules and τ-tilting modules.

Proposition 2.1.3 (AIR, Theorem 0.2]). Any τ-rigid A-module is a direct summand of some τ-tilting A-module.

We recall the concept of left mutation, which is the core concept of τ-tilting theory. Before doing this, we need the definition of minimal left approximation. Let \mathcal{C} be an additive category and X, Y objects of \mathcal{C}. A morphism $f: X \rightarrow Z$ with $Z \in \operatorname{add}(Y)$ is called a minimal left $\operatorname{add}(Y)$-approximation of X if f satisfies

- every $h \in \operatorname{Hom}_{\mathcal{C}}(Z, Z)$ that satisfies $h \circ f=f$ is an automorphism,
- $\operatorname{Hom}_{\mathcal{C}}\left(f, Z^{\prime}\right): \operatorname{Hom}_{\mathcal{C}}\left(Z, Z^{\prime}\right) \longrightarrow \operatorname{Hom}_{\mathcal{C}}\left(X, Z^{\prime}\right)$ is surjective for any $Z^{\prime} \in \operatorname{add}(Y)$,
where $\operatorname{add}(Y)$ is the category of all direct summands of finite direct sums of copies of Y.
Definition-Theorem 2.1.4 (AIR, Definition 2.19, Theorem 2.30]). Let $T=M \oplus N$ be a basic support τ-tilting A-module with an indecomposable direct summand M satisfying $M \notin \operatorname{Fac}(N)$. We take an exact sequence with a minimal left $\operatorname{add}(N)$-approximation f :

$$
M \xrightarrow{f} N^{\prime} \longrightarrow \text { coker } f \longrightarrow 0,
$$

where coker f is the cokernel of f. We call $\mu_{M}^{-}(T):=($ coker $f) \oplus N$ the left mutation of T with respect to M, which is again a basic support τ-tilting A-module. (The right mutation $\mu_{M}^{+}(T)$ can be defined dually.)

We may construct a directed graph $\mathcal{H}(\mathbf{s} \tau$-tilt $A)$ by drawing an arrow from T_{1} to T_{2} if T_{2} is a left mutation of T_{1}. On the other hand, the set $\boldsymbol{s} \tau$-tilt A has a poset structure with respect to the partial order \leq defined as follows. For any $M, N \in \mathbf{s} \tau$-tilt A, let (M, P) and (N, Q) be their corresponding support τ-tilting pairs, respectively. We say that $N \leq M$ if $\operatorname{Fac}(N) \subseteq \operatorname{Fac}(M)$, or equivalently, $\operatorname{Hom}_{A}(N, \tau M)=0$ and $\operatorname{add}(P) \subseteq \operatorname{add}(Q)$. Then,

Proposition 2.1.5 ([AIR, Theorem 2.33, Corollary 2.34]). The directed graph $\mathcal{H}(\mathbf{s} \tau$-tilt A) is exactly the Hasse quiver of the poset $\mathbf{s} \tau$-tilt A.

The following statement implies that an algebra A is τ-tilting finite if we can find a finite connected component in $\mathcal{H}(\mathrm{s} \tau$-tilt $A)$.

Proposition 2.1.6 ([AIR, Corollary 2.38]). If the Hasse quiver $\mathcal{H}(\mathbf{s} \tau$-tilt $A)$ contains a finite connected component Δ, then $\mathcal{H}(\mathrm{s} \tau$-tilt $A)=\Delta$.

Example 2.1.7. Let $A=K(1 \underset{\beta}{\stackrel{\alpha}{\rightleftarrows}} 2) /\langle\alpha \beta, \beta \alpha>$. We take an exact sequence with a minimal left $\operatorname{add}\left(P_{1}\right)$-approximation $f=\alpha \cdot-$ of P_{2} :

$$
\stackrel{e_{2}}{\xrightarrow[f]{\longrightarrow}}{ }_{\alpha}^{e_{1}} \longrightarrow \text { coker } f \longrightarrow 0 .
$$

Then, we have coker $f=S_{1}$ and $\mu_{P_{2}}^{-}(A)=P_{1} \oplus S_{1}$. Similarly, we can compute the left mutations step by step such that the Hasse quiver $\mathcal{H}(\mathbf{s} \tau$-tilt $A)$ is given as follows,

Lastly, according to the duality $(-)^{*}=\operatorname{Hom}_{A}(-, A)$, we have
Proposition 2.1.8 ([AIR, Theorem 2.14]). There exists a poset anti-isomorphism between $\mathrm{s} \tau$-tilt A and $\mathrm{s} \tau$-tilt $A^{\circ \mathrm{p}}$.

2.2 Silting theory

We denote by $\mathrm{C}^{\mathrm{b}}($ proj $A)$ the category of bounded complexes of projective A-modules and by $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} A)$ the corresponding homotopy category which is triangulated. Besides, we denote by \sim_{h} the homotopy equivalence in $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} A)$. For any $T \in \mathrm{~K}^{\mathrm{b}}(\operatorname{proj} A)$, let thick T be the smallest full triangulated subcategory containing T, which is closed under cones, $[\pm 1]$, direct summands and isomorphisms.

Definition 2.2.1 ([AI, Definition 2.1]). A complex $T \in \mathrm{~K}^{\mathrm{b}}(\operatorname{proj} A)$ is called presilting if

$$
\operatorname{Hom}_{\mathrm{K}^{\mathrm{b}}(\operatorname{proj} A)}(T, T[i])=0 \text { for any } i>0 .
$$

A presilting complex T is called silting if thick $T=\mathrm{K}^{\mathrm{b}}(\operatorname{proj} A)$. In particular, a silting complex T is called tilting if $\operatorname{Hom}_{K^{\mathrm{b}}(\operatorname{proj} A)}(T, T[i])=0$ for any $i<0$.

Similar to the left mutation of support τ-tilting modules, we recall the irreducible left silting mutation of silting complexes, see [AI, Definition 2.30]. Let $T=X \oplus Y$ be a basic silting complex in $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} A)$ with an indecomposable summand X. We take a minimal left $\operatorname{add}(Y)$-approximation π and a triangle

$$
X \xrightarrow{\pi} Z \longrightarrow \text { cone }(\pi) \longrightarrow X[1],
$$

where cone (π) is the mapping cone of π. Then, cone (π) is indecomposable and $\mu_{X}^{-}(T):=$ cone $(\pi) \oplus Y$ is again a basic silting complex in $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} A)$, see [AI, Theorem 2.31]. We call $\mu_{X}^{-}(T)$ the irreducible left (silting) mutation of T with respect to X.

Definition 2.2.2. A complex in $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} A)$ is called two-term if it is homotopy equivalent to a complex T concentrated in degree 0 and -1 , i.e.,

$$
\left(T^{-1} \xrightarrow{d_{T}^{-1}} T^{0}\right)=\cdots \longrightarrow 0 \longrightarrow T^{-1} \xrightarrow{d_{T}^{-1}} T^{0} \longrightarrow 0 \longrightarrow \cdots .
$$

We denote by 2-silt A the set of isomorphism classes of basic two-term silting complexes in $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} A)$. Similarly, there is a partial order \leq on the set 2 -silt A which is introduced by [AI, Theorem 2.11]. For $T, S \in 2$-silt A, we say that $S \leq T$ if $\operatorname{Hom}_{K^{b}(\operatorname{proj} A)}(T, S[i])=0$ for any $i>0$. Then, we denote by $\mathcal{H}(2$-silt $A)$ the Hasse quiver of 2 -silt A which is compatible with the irreducible left mutation of silting complexes.

Proposition 2.2.3 ($\widehat{\mathrm{AI}}$, Lemma 2.25, Theorem 2.27]). Let $T=\left(T^{-1} \rightarrow T^{0}\right) \in 2$-silt A. Then, we have $\operatorname{add}(A)=\operatorname{add}\left(T^{0} \oplus T^{-1}\right)$ and $\operatorname{add}\left(T^{0}\right) \cap \operatorname{add}\left(T^{-1}\right)=0$.

Suppose that $P_{1}, P_{2}, \ldots, P_{n}$ are pairwise non-isomorphic indecomposable projective A-modules. We denote by $\left[P_{1}\right],\left[P_{2}\right], \ldots,\left[P_{n}\right]$ the isomorphism classes of indecomposable complexes concentrated in degree 0 . Clearly, the classes $\left[P_{1}\right],\left[P_{2}\right], \ldots,\left[P_{n}\right]$ in $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} A)$ form a standard basis of the Grothendieck group $\mathrm{K}_{0}\left(\mathrm{~K}^{\mathrm{b}}(\operatorname{proj} A)\right)$. If a two-term complex T in $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} A)$ is written as

$$
\left(\bigoplus_{i=1}^{n} P_{i}^{\oplus b_{i}} \longrightarrow \bigoplus_{i=1}^{n} P_{i}^{\oplus a_{i}}\right)
$$

then the class $[T]$ can be identified by an integer vector

$$
g(T)=\left(a_{i}-b_{i}\right)_{i \in\{1,2, \ldots, n\}} \in \mathbb{Z}^{n},
$$

which is called the g-vector of T. Then, we have the following statement.
Proposition 2.2.4 (AIR, Theorem 5.5]). A basic two-term silting complex T is uniquely determined by its g-vector $g(T)$.

Example 2.2.5. Recall that $A=K(1 \underset{\beta}{\stackrel{\alpha}{\rightleftarrows}} 2) /\langle\alpha \beta, \beta \alpha>$. Then,

$$
\begin{gathered}
T_{1}=\cdots \longrightarrow 0 \longrightarrow P_{1} \oplus P_{2} \longrightarrow 0 \longrightarrow \cdots, \text { and } \\
T_{2}=\cdots \longrightarrow P_{2} \xrightarrow{\binom{\alpha}{0}} P_{1}^{\oplus 2} \longrightarrow 0 \longrightarrow \cdots,
\end{gathered}
$$

are basic two-term silting complexes. Moreover, we have $g\left(T_{1}\right)=(1,1)$ and $g\left(T_{2}\right)=(2,-1)$.
Next, we explain the connection between τ-tilting theory and silting theory.
Theorem 2.2.6 (AIR, Theorem 3.2]). There exists a poset isomorphism between $\mathbf{s} \tau$-tilt A and 2 -silt A. More precisely, the bijection is given by mapping a two-term silting complex T to its 0 -th cohomology $H^{0}(T)$, and the inverse is given by

$$
M \longmapsto\left(P^{\prime \prime} \oplus P \xrightarrow{\binom{f}{0}} P^{\prime}\right),
$$

where (M, P) is the corresponding support τ-tilting pair and $P^{\prime \prime} \xrightarrow{f} P^{\prime} \longrightarrow M \longrightarrow 0$ is a minimal projective presentation of M.

One may easily find the bijection between $\mathbf{s} \tau$-tilt A and 2 -silt A in the following example.
Example 2.2.7. Let $A=K(1 \underset{\beta}{\stackrel{\alpha}{\rightleftarrows}} 2) /\langle\alpha \beta, \beta \alpha\rangle$. Then, $\mathcal{H}(2$-silt $A)$ is given by

We introduce a reduction theorem for complexes in the homotopy category $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} A)$, which will dramatically reduce the direct calculations in this thesis.

Lemma 2.2.8. Let \sim_{h} be the homotopy equivalence in $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} A)$. If $Y \neq 0$ and

$$
\begin{aligned}
& T_{1}:=\left(0 \longrightarrow X \xrightarrow{\binom{1}{f}} X \oplus Y \xrightarrow{(-g \circ f, g)} Z \longrightarrow 0\right) \in \mathrm{K}^{\mathrm{b}}(\operatorname{proj} A), \\
& T_{2}:=\left(0 \longrightarrow X \oplus Y \xrightarrow{\left(\begin{array}{c}
f_{1} \\
1 \\
h_{2} \\
h_{1} \\
h_{2}
\end{array}\right)} Z \oplus X \oplus M \longrightarrow 0\right) \in \mathrm{K}^{\mathrm{b}}(\operatorname{proj} A),
\end{aligned}
$$

then we have $T_{1} \sim_{h} T_{1}^{r}$ and $T_{2} \sim_{h} T_{2}^{r}$, where

$$
\begin{gathered}
T_{1}^{r}=(0 \longrightarrow Y \xrightarrow{g} Z \longrightarrow 0) \in \mathrm{K}^{\mathrm{b}}(\operatorname{proj} A), \\
T_{2}^{r}=(0 \longrightarrow \\
Y \xrightarrow{\binom{f_{2}-f_{1} \circ g}{h_{2}-h_{1} \circ g}} Z \oplus M \longrightarrow \mathrm{~K}^{\mathrm{b}}(\operatorname{proj} A) .
\end{gathered}
$$

Proof. (1) We define $\varphi: T_{1} \rightarrow T_{1}^{r}$ and $\psi: T_{1}^{r} \rightarrow T_{1}$ as follows,

Then, we have $\varphi \circ \psi=\operatorname{Id}_{T_{1}^{r}}$ and

$$
\psi \circ \varphi=\left(0,\left(\begin{array}{cc}
0 & 0 \\
-f & 1
\end{array}\right), 1\right) \sim_{h} \operatorname{Id}_{T_{1}},
$$

because the difference $\operatorname{Id}_{T_{1}}-\psi \circ \varphi$ is null-homotopic as follows,

(2) We define $\varphi: T_{2} \rightarrow T_{2}^{r}$ and $\psi: T_{2}^{r} \rightarrow T_{2}$ as follows,

$$
\begin{aligned}
& T_{2}: \quad 0 \longrightarrow X \oplus Y \xrightarrow{\left(\begin{array}{cc}
f_{1} & f_{2} \\
1 & g \\
h_{1} & h_{2}
\end{array}\right)} Z \oplus X \oplus M \longrightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
& T_{2}^{r}: \quad 0 \longrightarrow Y \xrightarrow[\binom{f_{2}-f_{1} \circ g}{h_{2}-h_{1} \circ g}]{ } Z \oplus M \longrightarrow 0
\end{aligned}
$$

Then, we have $\varphi \circ \psi=\mathrm{Id}_{T_{2}^{r}}$ and

$$
\psi \circ \varphi=\left(\left(\begin{array}{cc}
0 & -g \\
0 & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & -f_{1} & 0 \\
0 & 0 & 0 \\
0 & -h_{1} & 1
\end{array}\right)\right) \sim_{h} \operatorname{Id}_{T_{2}} .
$$

In fact, the difference $\operatorname{Id}_{T_{2}}-\psi \circ \varphi$ is null-homotopic as follows,

Therefore, we have $T_{1} \sim_{h} T_{1}^{r}$ and $T_{2} \sim_{h} T_{2}^{r}$.

$2.3 \quad \tau$-tilting finite algebras

In this section, we will introduce the main object we are interested in. Recall that A is a finite-dimensional basic algebra over an algebraically closed field K.

Definition 2.3.1. We call A a τ-tilting finite algebra if there are only finitely many isomorphism classes of basic τ-tilting A-modules. Otherwise, A is called τ-tilting infinite.

Moreover, we have some equivalent conditions for A to be τ-tilting finite.
Proposition 2.3.2 ([DIJ, Corollary 2.9]). An algebra A is τ-tilting finite if and only if one of (equivalently, any of) the sets τ-rigid A, s τ-tilt A and 2 -silt A is a finite set.

A typical example of τ-tilting finite algebras is the class of representation-finite algebras. In particular, we have known the number $\# \mathbf{s} \tau$-tilt $K \Delta$ for a representation-finite path algebra $K \Delta$. We recall this result as follows.

Proposition 2.3.3 ([Ad2, Proposition 1.6], ONFR, Theorem 1]). Let $K \Delta$ be a path algebra with a finite quiver Δ whose underlying graph is one of Dynkin diagrams of type $\mathbb{A}_{n}, \mathbb{D}_{n}, \mathbb{E}_{6}, \mathbb{E}_{7}, \mathbb{E}_{8}$. Then, $\# \mathbf{s} \tau$-tilt $K \Delta$ is independent of the orientation of Δ and

Δ	\mathbb{A}_{n}	$\mathbb{D}_{n}(n \geqslant 4)$	\mathbb{E}_{6}	\mathbb{E}_{7}	\mathbb{E}_{8}
\#s τ-tilt $K \Delta$	$\frac{1}{n+2}\binom{2 n+2}{n+1}$	$\left[\begin{array}{c}2 n-1 \\ n-1\end{array}\right]$	833	4160	25080

where $\binom{x}{y}$ is the binomial coefficient and $\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{x+y}{x}\binom{x}{y}$.

Since the class of τ-tilting infinite algebras is infinite, we are interested in the minimal cases among all τ-tilting infinite algebras. We recall that an algebra B is said to be a quotient (or quotient algebra) of an algebra A if there exists a surjective K-algebra homomorphism $\phi: A \rightarrow B$.

Definition 2.3.4. An algebra A is called minimal τ-tilting infinite if A is τ-tilting infinite, but any proper quotient algebra of A is τ-tilting finite.

It is known that any path algebra $K \Delta$ with a finite quiver Δ whose underlying graph is one of Euclidean diagrams of type $\widetilde{\mathbb{A}}_{n}, \widetilde{\mathbb{D}}_{n}(n \geqslant 4), \widetilde{\mathbb{E}}_{6}, \widetilde{\mathbb{E}}_{7}, \widetilde{\mathbb{E}}_{8}$, is minimal τ-tilting infinite. Besides, Mousavand also introduced this notion independently in his recent work [M0, where the author is trying to give a complete classification of minimal representation-infinite algebras in terms of τ-tilting finiteness.

We recall two reduction theorems for the τ-tilting finiteness of an algebra A, which will imply the importance of minimal τ-tilting infinite algebras.

Proposition 2.3.5 ([DIJ, Theorem 4.2], DIRRT, Theorem 5.12]). If A is τ-tilting finite,
(1) the quotient algebra A / I is τ-tilting finite for any two-sided ideal I of A,
(2) the idempotent truncation $e A e$ is τ-tilting finite for any idempotent e of A.

In Proposition 2.3.5 (1), we may reduce the question on A to the question on A / I if we take a special two-sided ideal I of A. This technical method is powerful and it is provided by Eisele, Janssens and Raedschelders [EJR]. We recall this method as follows.

Proposition 2.3.6 ([EJR, Theorem 1]). Let I be a two-sided ideal generated by central elements which are contained in the Jacobson radical of A. Then, there exists a poset isomorphism between $\mathbf{s} \tau$-tilt A and $\mathbf{s} \tau$-tilt (A / I).

We notice that the τ-rigid-brick correspondence is also useful for determining the τ-tilting finiteness of an algebra A. Recall that K is assumed to be an algebraically closed field. Then, M is called a brick if $\operatorname{End}_{A}(M)=K$. We denote by brick A the set of isomorphism classes of bricks in $\bmod A$.

Proposition 2.3.7 ([DIJ, Theorem 4.2]). Let A be a finite-dimensional algebra. Then, A is τ-tilting finite if and only if the set brick A is finite.

When we compute the number $\# \mathrm{~s} \tau$-tilt A in some cases, Proposition 2.3 .6 may greatly reduce the direct calculations of left mutations. For example, let $A:=K Q / I$ with

$$
Q:{ }_{\alpha} C 1 \underset{\nu}{\stackrel{\mu}{\rightleftarrows}} 2 \text { and } I:<\alpha^{2}-\mu \nu, \nu \alpha \mu>.
$$

We denote the indecomposable projective A-modules by P_{1} and P_{2}. Then, we have

Now, we may focus on the central element $\mu \nu+\nu \mu$ of A, and consider the quotient algebra $\widetilde{A}:=A /<\mu \nu+\nu \mu>$. Let \widetilde{P}_{1} and \widetilde{P}_{2} be the indecomposable projective \widetilde{A}-modules. Then,

$$
\widetilde{P}_{1}=\underset{\substack{\alpha^{\prime} \\ \alpha^{\prime} \mu}}{e_{1}} \cdot \mu \simeq \underset{1_{2}^{\prime}}{1_{2}^{\prime}}{ }_{2} \quad \text { and } \widetilde{P}_{2}=\stackrel{e_{2}}{\stackrel{\dot{\nu} \alpha}{\dot{\nu}}} \simeq \stackrel{2}{\underset{1}{\dot{1}}} .
$$

By direct calculation, one may find that the Hasse quiver $\mathcal{H}(\mathbf{s} \tau$-tilt $\widetilde{A})$ is as follows,

Thus, we deduce that $\# \mathrm{~s} \tau$-tilt $\widetilde{A}=8$. By Proposition 2.3.6, we have $\# \mathrm{~s} \tau$-tilt $A=8$.
Next, we consider $\# \mathbf{s} \tau$-tilt A for an arbitrary τ-tilting finite algebra A. We say that a right A-module M is support-rank s if there exist exactly s nonzero primitive orthogonal idempotents $e_{1}, e_{2}, \ldots, e_{s}$ of A such that $M e_{i} \neq 0$. Then, we denote by $a_{s}(A)$ the number of pairwise non-isomorphic basic support τ-tilting A-modules with support-rank s for $0 \leqslant s \leqslant|A|$. It is obvious that $a_{0}(A)=1$ and $a_{1}(A)=|A|$ since it is the local algebra case. Then, we have

$$
\# \mathrm{~s} \tau \text {-tilt } A=\sum_{s=0}^{|A|} a_{s}(A) .
$$

Note that $a_{|A|}(A)$ is just the number of pairwise non-isomorphic basic τ-tilting A-modules.
Let M be a support τ-tilting A-module. According to Definition 2.1.1, we may assume that M is a τ-tilting B-module for

$$
B:=A /<1-e_{1}-e_{2}-\cdots-e_{s}>,
$$

with some nonzero orthogonal idempotents $e_{1}, e_{2}, \ldots, e_{s}$ of A. By AIR, Proposition 2.2], τ-tilting B-modules are precisely sincere support τ-tilting B-modules, so that the support-rank of M is equal to $|M|$. Thus, we have

Proposition 2.3.8 ([Ad2, Proposition 1.8]). Let M be a support τ-tilting A-module and $0 \leqslant s \leqslant|A|$. Then, M is support-rank s if and only if $|M|=s$.

Although the number $\# \mathbf{s} \tau$-tilt A can be determined for some special classes of algebras, such as path algebras of Dynkin type in Proposition 2.3.3, preprojective algebras of Dynkin type Mi], etc., but it is not easy to find the number $\# \mathrm{~s} \tau$-tilt A for general cases.

We explain the reasons as follows. If A is a path algebra of Dynkin type, one can find some recursive relations between $a_{s-1}(A)$ and $a_{s}(A)$ such that we get a formula to calculate $\# \mathrm{~s} \tau$-tilt A. If A is a preprojective algebra of Dynkin type Δ, we may construct a one-to-one correspondence between (pairwise non-isomorphic basic) support τ-tilting A-modules and elements in the Weyl group W_{Δ} associated with Δ. Since the number of elements in W_{Δ} is known, we get the number $\# \mathbf{s} \tau$-tilt A.

However, it is difficult to find such a recursive relation or such a one-to-one correspondence in general, so that we can only determine the number $\# \mathbf{s} \tau$-tilt A by direct computation. We have tried to construct recursive relations between $a_{s-1}(A)$ and $a_{s}(A)$ for some examples. Here, we present a representation-finite tilted algebra as an example, and the proof is given in the Appendix A.2.

Example 2.3.9. Let Λ_{3} be the path algebra of $\circ \leftarrow \circ \longrightarrow 0$ and $\Lambda_{n}:=K Q_{n} / I(n \geqslant 4)$ the algebra presented by the following quiver Q_{n} and $I=\langle\alpha \mu-\beta \nu\rangle$,

Then, based on the symbols above, we have
(1) $a_{n}\left(\Lambda_{n}\right)=a_{n-1}\left(\Lambda_{n}\right)-\frac{1}{n-2}\binom{2 n-6}{n-3}$.
(2) $a_{n-1}\left(\Lambda_{n}\right)=a_{n-1}\left(\Lambda_{n-1}\right)+\frac{3 n-7}{2 n-4}\binom{2 n-4}{n-3}+2 \cdot \frac{(5 n-11) \cdot(2 n-6)!}{(n-3)!\cdot(n-1)!}+\sum_{i=4}^{n-1} a_{i-1}\left(\Lambda_{i-1}\right) \cdot \frac{1}{n-i+1}\binom{2(n-i)}{n-i}$.
(3) $a_{n-2}\left(\Lambda_{n}\right)=a_{n-2}\left(\Lambda_{n-1}\right)+a_{n-3}\left(\Lambda_{n}\right)+\frac{1}{n-2}\binom{2 n-6}{n-3}$.
(4) $a_{s}\left(\Lambda_{n}\right)=a_{s}\left(\Lambda_{n-1}\right)+a_{s-1}\left(\Lambda_{n}\right)$ for any $1 \leqslant s \leqslant n-3$.

These recursive formulas enable us to compute $\# \mathbf{s} \boldsymbol{\tau}$-tilt Λ_{n} step by step. For example,

$\underbrace{a_{s}\left(\Lambda_{n}\right)}_{n} \int^{n} \|$ n 1 2 3 4 5 6 7 8 9 \#s τ-tilt Λ_{n}											
4	1	4	10	16	15					46	
5	1	5	15	33	54	52				160	
6	1	6	21	54	113	192	187				574
7	1	7	28	82	195	401	700	686			
8	1	8	36	118	313	714	1456	2592	2550		7788
9	1	9	45	163	476	1190	2646	5307	9702	9570	29172

We show that Λ_{n} is a tilted algebra of Dynkin type \mathbb{D}_{n} and therefore, Λ_{n} is representationfinite following [ASS, VIII. Lemma 3.2]. Let $\vec{D}_{n}(n \geqslant 4)$ be a path algebra with quiver:

Then, the indecomposable projective \vec{D}_{n}-modules are displayed as follows,

By Definition-Theorem 2.1.4, it is easy to find that

$$
\mu_{P_{3}}^{-}\left(\vec{D}_{n}\right)=P_{1} \oplus P_{2} \oplus M \oplus P_{4} \oplus \cdots \oplus P_{n-1} \oplus P_{n}, \text { where } M=\begin{gathered}
1_{3}{ }^{2} \\
\stackrel{4}{4} \\
\vdots \\
\vdots \\
n
\end{gathered},
$$

and $\mu_{P_{3}}^{-}\left(\vec{D}_{n}\right)$ is a τ-tilting \vec{D}_{n}-module. Since tilting modules (see Definition 2.0.3) and τ-tilting modules coincide over a path algebra, $\mu_{P_{3}}^{-}\left(\vec{D}_{n}\right)$ is a tilting \vec{D}_{n}-module. Then, we have $\Lambda_{n}=\operatorname{End}_{\vec{D}_{n}}\left(\mu_{P_{3}}^{-}\left(\vec{D}_{n}\right)\right)$. To see this, we observe the following sequence in the Auslander-Reiten quiver $\Gamma\left(\bmod \vec{D}_{n}\right)$ of \vec{D}_{n},

We define two non-zero morphisms $\alpha: P_{1} \rightarrow M$ and $\mu: P_{4} \rightarrow P_{1}$, then $\alpha \mu: P_{4} \rightarrow M$. Similarly, we define β and $-\nu$ by $P_{2} \rightarrow M$ and $P_{4} \rightarrow P_{2}$, respectively. Since the composition $P_{4} \rightarrow P_{3} / S_{n} \rightarrow M$ is zero, we have $\alpha \mu=\beta \nu$. (In fact, α, μ, β, ν are unique non-zero morphisms, and there are no non-zero morphisms from P_{3} / S_{n} to M.)

When we compute the left mutation of support τ-tilting modules, we usually start at A and end at 0 since A is the maximal element in s τ-tilt A. As we explained before, we divide the whole calculation into the calculations for different support-ranks. We use the following example to illustrate our method.

Example 2.3.10. Let $A:=K Q / I$ be the bound quiver algebra given by

$$
Q: 1 \underset{\substack{\beta_{1} \\
\alpha_{2}}}{\stackrel{\alpha_{1}}{\rightleftarrows}} 3 \underset{\left.\right|_{2}}{\stackrel{\beta_{3}}{\beta_{3}}} 4 \text { and } I:\left\langle\begin{array}{c}
\alpha_{1} \beta_{1}, \alpha_{2} \beta_{2}, \beta_{2} \alpha_{2}, \alpha_{3} \beta_{1}, \alpha_{3} \beta_{2}, \\
\alpha_{1} \beta_{3}, \alpha_{2} \beta_{3}, \alpha_{3} \beta_{3}, \beta_{3} \alpha_{3}, \alpha_{2} \beta_{1} \alpha_{1} \beta_{2},
\end{array}\right\rangle .
$$

Since the support τ-tilting A-module with support-rank 0 is unique, we have $a_{0}(A)=1$. Since each simple A-module S_{i} is an $A / A\left(1-e_{i}\right) A$-module and $A / A\left(1-e_{i}\right) A \simeq \mathbb{F}$, we observe that the support τ-tilting A-modules with support-rank 1 are exactly the simple A-modules. Then, $a_{1}(A)=|A|=4$.

Let M be a support τ-tilting A-module with support-rank 2 , and with supports e_{i} and $e_{j}(i \neq j)$. Then, M becomes a τ-tilting A / J-module with $J=<1-e_{i}-e_{j}>$. We denote by $\mathrm{b}_{i, j}$ the number of τ-tilting A / J-modules. For example, if $(i, j)=(1,3)$, then

$$
A / J=K\left(1 \underset{\beta_{1}}{\stackrel{\alpha_{1}}{\rightleftarrows}} 3\right) /\left\langle\alpha_{1} \beta_{1}\right\rangle .
$$

Note that $\beta_{1} \alpha_{1}$ is a central element of A / J, we may apply Proposition 2.3.6 and Example 2.1.7 to show that the Hasse quiver $\mathcal{H}(\mathbf{s} \tau$-tilt $A / J)$ is displayed as follows,

where we denote by $\bullet \tau$-tilting A / J-modules and by o other support τ-tilting (but not τ-tilting) A / J-modules. Hence, we deduce that $\mathrm{b}_{1,3}=3$. Similarly, we have

$$
\begin{array}{c|ccccc}
(i, j) & (1,2) & (1,4) & (2,3) & (2,4) & (3,4) \\
\hline \mathrm{b}_{i, j} & 1 & 1 & 3 & 1 & 3
\end{array} .
$$

This implies that $a_{2}(A)=12$.
Let N be a support τ-tilting A-module with support-rank 3 . Then, N becomes a τ-tilting A / L_{j}-module with $L_{j}=\left\langle e_{j}\right\rangle$, where e_{j} is the only one non-zero primitive idempotent satisfying $N e_{j}=0$. We denote by d_{j} the number of τ-tilting A / L_{j}-modules. For example, if $j=4$, then

$$
A / L_{4}=K\left(1 \underset{\beta_{1}}{\stackrel{\alpha_{1}}{\rightleftarrows}} 3 \underset{\alpha_{2}}{\stackrel{\beta_{2}}{\rightleftarrows}} 2\right) /\left\langle\alpha_{1} \beta_{1}, \alpha_{2} \beta_{2}, \beta_{2} \alpha_{2}, \alpha_{2} \beta_{1} \alpha_{1} \beta_{2}\right\rangle .
$$

Similar to the above, we compute the left mutations by hand to show that the Hasse quiver $\mathcal{H}\left(\mathrm{s} \tau\right.$-tilt $\left.A / L_{4}\right)$ is as follows,

We deduce that $\mathrm{d}_{4}=17$. If $j=2$, then

$$
A / L_{2}=K\left(1 \underset{\beta_{1}}{\stackrel{\alpha_{1}}{\rightleftarrows}} 3 \underset{\alpha_{3}}{\stackrel{\beta_{3}}{\rightleftarrows}} 4\right) /\left\langle\alpha_{1} \beta_{1}, \alpha_{3} \beta_{1}, \alpha_{1} \beta_{3}, \beta_{3} \alpha_{3}, \alpha_{3} \beta_{3}\right\rangle,
$$

and the Hasse quiver $\mathcal{H}\left(\mathrm{s} \tau\right.$-tilt $\left.A / L_{2}\right)$ is shown as follows by direct calculation,

We deduce that $\mathrm{d}_{2}=9$. Similarly, we have $\mathrm{d}_{1}=9$ and $\mathrm{d}_{3}=1$. Therefore, $a_{3}(A)=36$.
We may compute $a_{4}(A)$ by hand, because the support τ-tilting A-modules with supportrank 4 are just τ-tilting A-modules, which can be obtained by the left mutations starting with A. See Appendix A. 3 for a complete list of τ-tilting A-modules and one may easily construct the part of $\mathcal{H}(\mathbf{s} \tau$-tilt $A)$ consisting of all τ-tilting A-modules. Thus, $a_{4}(A)=61$.

Finally, we conclude that $\#$ s τ-tilt $A=1+4+12+36+61=114$.

2.4 Tilting theory and derived equivalence

We briefly review the connection between tilting theory and τ-tilting theory. We mention that the definition of tilting modules is given in Definition 2.0.3. Then, it is shown in AIR that any tilting module is a τ-tilting module, and any faithful τ-tilting module is a tilting module. Here, a right A-module M is called faithful if the annihilator $\operatorname{ann}(M)=\{x \in A \mid M x=0\}$ is zero.

Also, we briefly introduce the connection between tilting theory and derived equivalence. Let $\mathrm{D}^{\mathrm{b}}(\bmod A)$ be the derived category of bounded complexes of modules from $\bmod A$, which is the localization of the homotopy category $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} A)$ with respect to quasiisomorphisms. Then, $\mathrm{D}^{\mathrm{b}}(\bmod A)$ is also a triangulated category. We recall that two algebras A and B are said to be derived equivalent if their derived categories $\mathrm{D}^{\mathrm{b}}(\bmod A)$ and $\mathrm{D}^{\mathrm{b}}(\bmod B)$ are equivalent as triangulated categories.

It is worth mentioning that tilting modules induce an essential class of derived equivalence of algebras. Let M be a tilting A-module, the endomorphism algebra $B=\operatorname{End}_{A} M$ is called a tilted algebra of A. In this case, Happel [Ha, Corollary 1.7] showed that the algebras A and B are derived equivalent. More generally, we have

Proposition 2.4.1 ([国配, Theorem 6.4]). Let A and B be two algebras. Then, A and B are derived equivalent if and only if

$$
B \simeq \operatorname{End}_{\mathrm{K}^{\mathrm{b}}(\operatorname{proj} A)}(T)
$$

for a tilting complex T in $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} A)$.

Chapter 3

Algebras With Two Simple Modules

Since local algebras, i.e., algebras with only one simple module, are always τ-tilting finite, the class of algebras with exactly two simple modules (up to isomorphism) is fundamental in τ-tilting theory. In this chapter, we focus on this class of algebras and call them two-point algebras.

Two-point algebras are also fundamental if we consider the representation type of general algebras, so that the representation type of two-point algebras has been determined for many years. We may review these results here: the maximal representation-finite two-point algebras are classified by Bongartz and Gabriel [BoG], the tame two-point algebras are classified by several authors in [BH], DG], Gei], Han] and the minimal wild two-point algebras are classified by Han Han.

In [Han, a minimal wild algebra A is called strongly minimal wild if there is no wild algebra B with $|B|<|A|$ and a fully faithful exact functor $\mathcal{F}: \bmod B \rightarrow \bmod A$. It is obvious that any wild algebra A admits a strongly minimal wild algebra B with a fully faithful exact functor $\mathcal{F}: \bmod B \rightarrow \bmod A$. Notice that strongly minimal wild two-point algebras are also classified by Han Han and this class coincides with the class of minimal wild two-point algebras, except for an exact special case.

On the other hand, if B is τ-tilting infinite and there is a fully faithful functor $\mathcal{F}: \bmod B \rightarrow \bmod A$, then A is also τ-tilting infinite since \mathcal{F} sends a brick in $\bmod B$ to a brick in $\bmod A$, see Proposition 2.3.7. Therefore, one wants to give a complete classification of minimal τ-tilting infinite two-point algebras. With this motivation in mind, we determine the τ-tilting finiteness for (strongly) minimal wild two-point algebras. According to our result Theorem 3.2 .3 , most of (strongly) minimal wild two-point algebras are τ-tilting finite. We mention that we do not know the τ-tilting finiteness for an arbitrary wild two-point algebra which has a τ-tilting finite minimal wild two-point algebra as a quotient algebra.

Toward the complete classification of τ-tilting finite two-point algebras, we also have to consider tame two-point algebras. However, it is difficult at this moment to give a complete result on tame two-point algebras, because the tameness of two-point algebras depends on the technique called degeneration, and it is still open to finding the relation
between τ-tilting finiteness and degeneration. We may give a partial result on tame two-point algebras. We recall from [Han] (see Proposition 3.2.1 of this chapter) that all tame two-point algebras can degenerate to a finite set (Table T in Han, see also Appendix A.2) of two-point algebras. Then, we check the τ-tilting finiteness for algebras in Table T.

We point out that Aihara-Kase [AK] and Kase [K] have got some interesting results. For example, Kase [K, Theorem 6.1] showed that for any natural numbers s and t, we can find a τ-tilting finite two-point algebra A such that the Hasse quiver $\mathcal{H}(\mathrm{s} \tau$-tilt $A)$ is of the following form

In this case, we say that $\mathcal{H}(\mathbf{s} \tau$-tilt $A)$ is of type $\mathcal{H}_{s, t}$ and it is easy to find $\mathcal{H}_{s, t} \simeq \mathcal{H}_{t, s}$. Besides, it is well-known that the Kronecker algebra $K(\circ \Longrightarrow 0)$ is τ-tilting infinite (we present a proof in Lemma 3.1.1 for the convenience of readers).

In the first section of this chapter, we explain our strategy for reducing (strongly) minimal wild two-point algebras and algebras in Table T to a small set of two-point algebras. Then, we determine the τ-tilting finiteness of this small set. In the second section, we determine the τ-tilting finiteness for all (strongly) minimal wild two-point algebras and all algebras in Table T. We also observe that our results are useful to determine the τ-tilting finiteness for several other classes of algebras, such as tame two-point distributive algebras [Gei], two-point symmetric special biserial algebras AIP] and so on. We have given some applications at the end of this chapter.

3.1 A small set of two-point algebras

Let A be a finite-dimensional algebra over an algebraically closed field K. We denote by $\operatorname{rad}(A)$ the Jacobson radical of A and by $C(A)$ the center of A. As explained in Section 2.3, although A has a complicated structure, its quotient algebra

$$
\widetilde{A}:=A /<C(A) \cap \operatorname{rad}(A)>
$$

may have a simpler structure. Moreover, by Proposition 2.3.6, we know that $\# \mathbf{s} \tau$-tilt $A=$ $\# \mathbf{s} \tau$-tilt \widetilde{A} and the Hasse quivers $\mathcal{H}(\mathbf{s} \tau$-tilt $A)$ and $\mathcal{H}(\mathbf{s} \tau$-tilt $\widetilde{A})$ are of the same type. Then, by using this strategy and Proposition 2.3.5, we can restrict (strongly) minimal wild two-point algebras and algebras in Table T (except for three cases: W_{4}, T_{20} and T_{21}) to a small list (i.e., Table Λ) of two-point algebras. (In Table Λ, an algebra Λ_{i} is just the bound quiver algebra $K Q / I_{i}$, where I_{i} is the admissible ideal generated by the relation (i).)

Thus, as a preparation for proving our main results in this chapter, we shall determine the τ-tilting finiteness of Λ_{i} in Table Λ. We remark that $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.\Lambda_{1}\right)$ is of type $\mathcal{H}_{1,2}$ and $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.\Lambda_{6}\right)$ is of type $\mathcal{H}_{2,2}$, see Example 2.1.7.
$\underline{\Lambda_{1}=K(1 \longrightarrow 2) ; ~}$
$\Lambda_{2}=K(1 \Longrightarrow 2) ;$
$Q: 1 \xrightarrow{\mu} 2 \supset^{\beta}$
(3) $\beta^{2}=0$;
(4) $\beta^{3}=0$;
$Q:{ }^{\alpha} \subset 1 \xrightarrow{\mu} 2 \bigcirc^{\beta}$
$Q: 1 \underset{\nu}{\stackrel{\mu}{\rightleftarrows}} 2$
(6) $\mu \nu=\nu \mu=0$;
$Q:{ }_{\alpha} \subset 1 \underset{\nu}{\underset{\nu}{\rightleftarrows}} 2$
(7) $\alpha^{2}=\mu \nu=\nu \mu=\nu \alpha=0$;
(8) $\alpha^{2}=\mu \nu=\nu \mu=\nu \alpha \mu=0$;
(9) $\alpha^{3}=\mu \nu=\nu \mu=\nu \alpha=0$;
(10) $\alpha^{3}=\mu \nu=\nu \mu=\nu \alpha \mu=\nu \alpha^{2} \mu=0$;
(5) $\alpha^{2}=\beta^{2}=0$;
$Q:{ }_{\alpha} \subset 1 \underset{\nu}{\stackrel{\mu}{\rightleftarrows}} 2 \supset^{\beta}$
(11) $\alpha^{2}=\beta^{2}=\mu \nu=\nu \mu=\alpha \mu=\beta \nu=0$;
(12) $\alpha^{2}=\beta^{2}=\mu \nu=\nu \mu=\beta \nu=\nu \alpha=\alpha \mu \beta=0$.

Lemma 3.1.1. The Kronecker algebra Λ_{2} is minimal τ-tilting infinite.
Proof. It is easy to check that $M_{k}=K \underset{1}{\stackrel{k}{\longrightarrow}} K$ with $k \in K$ is a brick in $\bmod \Lambda_{2}$. Since the family $\left(M_{k}\right)_{k \in K}$ consists of infinitely many pairwise non-isomorphic bricks, Λ_{2} is τ-tilting infinite by Proposition 2.3.7. Then, the minimality is obvious.

Lemma 3.1.2. The two-point algebras Λ_{3} and Λ_{4} are τ-tilting finite.
Proof. Since Λ_{3} is a quotient algebra of Λ_{4}, by Proposition 2.3.5, it suffices to show that Λ_{4} is τ-tilting finite. We show that the poset 2 -silt Λ_{4} has a finite connected component and hence, it exhausts all two-term silting complexes in $\mathrm{K}^{\mathrm{b}}\left(\operatorname{proj} \Lambda_{4}\right)$ by Proposition 2.1.6 and Theorem 2.2.6. Then, Λ_{4} is τ-tilting finite following from Proposition 2.3.2. Let P_{1} and P_{2} be the indecomposable projective Λ_{4}-modules. We have

$$
P_{1}=\underset{\mu \beta^{2}}{\mu} \underset{\mu}{e_{1}} \simeq \stackrel{1}{2} \text { 2 }
$$

We show that $\mathcal{H}\left(2\right.$-silt $\left.\Lambda_{4}\right)$ is of type $\mathcal{H}_{1,5}$ as follows,

where

$$
f_{1}=\left(\begin{array}{c}
\mu \\
\mu \beta \\
\mu \beta^{2}
\end{array}\right), f_{2}=\binom{\mu}{\mu \beta}, f_{3}=\left(\begin{array}{cc}
\mu & 0 \\
-\mu \beta & \mu \\
0 & \mu \beta
\end{array}\right) .
$$

Since $\operatorname{Hom}_{\Lambda_{4}}\left(P_{2}, P_{1}\right)=e_{1} \Lambda_{4} e_{2}=K \mu \oplus K \mu \beta \oplus K \mu \beta^{2}$ and $\operatorname{Hom}_{\Lambda_{4}}\left(P_{1}, P_{2}\right)=0$, it is not difficult to compute the left mutations $\mu_{P_{1}}^{-}\left(\Lambda_{4}\right)$ and $\mu_{P_{2}}^{-}\left(\Lambda_{4}\right)$. According to the bijection introduced in Theorem 2.2.6, one can find the corresponding two-term silting complexes. We only show details for the rest of the steps.
(1) Let $T_{2}=X \oplus Y:=\left(0 \longrightarrow P_{1}\right) \oplus\left(P_{2} \xrightarrow{f_{1}} P_{1}^{\oplus 3}\right)$. Then, $\mu_{Y}^{-}\left(T_{2}\right)$ does not belong to 2-silt Λ_{4} and therefore, we ignore this mutation. To compute $\mu_{X}^{-}\left(T_{2}\right)$, we take a triangle

$$
X \xrightarrow{\pi} Y \longrightarrow \operatorname{cone}(\pi) \longrightarrow X[1] \text { with } \pi=\left(0,\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right) .
$$

We may check that π is a minimal left $\operatorname{add}(Y)$-approximation. In fact, by the definition,

- if we compose π with the endomorphism

then all elements of $\operatorname{Hom}_{\mathrm{K}^{\mathrm{b}}\left(\operatorname{proj} \Lambda_{4}\right)}(X, Y)$ are obtained;
- if $\left(\begin{array}{ccc}k_{1} & k_{2} & k_{3} \\ 0 & k_{1} & k_{2} \\ 0 & 0 & k_{1}\end{array}\right)\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$, then $k_{1}=1$ and $k_{2}=k_{3}=0$.

Hence, π is indeed a minimal left add (Y)-approximation. We apply Lemma 2.2 .8 by setting $X=Z=M=P_{1}, Y=P_{2}$ and $X \oplus Y \rightarrow Z \oplus X \oplus M$ by

$$
\left(\begin{array}{cc}
0 & \mu \\
1 & \mu \beta^{2} \\
0 & \mu \beta
\end{array}\right) .
$$

Then, we have

$$
\operatorname{cone}(\pi)=\left(P_{1} \oplus P_{2} \xrightarrow{\left(\begin{array}{cc}
0 & \mu \\
0 & \mu \beta \\
1 & \mu \beta^{2}
\end{array}\right)} P_{1}^{\oplus 3}\right) \sim_{h}\left(P_{2} \xrightarrow{f_{2}} P_{1}^{\oplus 2}\right) .
$$

Thus, $\mu_{X}^{-}\left(T_{2}\right)=\left(P_{2} \xrightarrow{f_{2}} P_{1}^{\oplus 2}\right) \oplus\left(P_{2} \xrightarrow{f_{1}} P_{1}^{\oplus 3}\right)$.
(2) Let $T_{21}=X \oplus Y:=\left(P_{2} \xrightarrow{f_{2}} P_{1}^{\oplus 2}\right) \oplus\left(P_{2} \xrightarrow{f_{1}} P_{1}^{\oplus 3}\right)$. Then, $\mu_{X}^{-}\left(T_{21}\right) \notin$ 2-silt Λ_{4}. To compute $\mu_{Y}^{-}\left(T_{21}\right)$, we take a triangle

$$
Y \xrightarrow{\pi} X^{\oplus 3} \longrightarrow \operatorname{cone}(\pi) \longrightarrow Y[1] \text { with } \pi=\left(\left(\begin{array}{c}
e_{2} \\
\beta \\
\beta^{2}
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\right) .
$$

Then, π is a minimal left $\operatorname{add}(X)$-approximation. (In fact, we have $\operatorname{End}_{K^{\mathrm{b}}\left(\operatorname{proj} \Lambda_{4}\right)}(X)=K$ since $\operatorname{End}_{\Lambda_{4}}\left(P_{1}\right)=K$. Then,

$$
\operatorname{End}_{K^{\mathrm{b}}\left(\operatorname{proj} \Lambda_{4}\right)}\left(X^{\oplus 3}\right) \simeq \operatorname{Mat}(3,3, K)
$$

Secondly, $\lambda \circ \pi=\pi$ for $\lambda \in \operatorname{Mat}(3,3, K)$ implies that λ is the identity. Thus, π is indeed a minimal left $\operatorname{add}(X)$-approximation.) Similar to the above, we can apply Lemma 2.2.8 twice by precise settings. Then, we have

$$
\operatorname{cone}(\pi)=\left(P_{2} \xrightarrow{\left(\begin{array}{c}
-\mu \\
-\mu \beta \\
-\mu \beta^{2} \\
e_{2} \\
\beta \\
\beta^{2}
\end{array}\right)} P_{1}^{\oplus 3} \oplus P_{2}^{\oplus 3} \xrightarrow{\left(\begin{array}{cccccc}
1 & 0 & 0 & \mu & 0 & 0 \\
0 & 1 & 0 & \mu \beta & 0 & 0 \\
0 & 1 & 0 & 0 & \mu & 0 \\
0 & 0 & 1 & 0 & \mu \beta & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \mu \beta
\end{array}\right)} P_{1}^{\oplus 6}\right) \sim_{h}\left(P_{2}^{\oplus 2} \xrightarrow{f_{3}} P_{1}^{\oplus 3}\right) .
$$

Thus, $\mu_{Y}^{-}\left(T_{21}\right)=\left(P_{2} \xrightarrow{f_{2}} P_{1}^{\oplus 2}\right) \oplus\left(P_{2}^{\oplus 2} \xrightarrow{f_{3}} P_{1}^{\oplus 3}\right)$.
(3) Let $T_{212}=X \oplus Y:=\left(P_{2} \xrightarrow{f_{2}} P_{1}^{\oplus 2}\right) \oplus\left(P_{2}^{\oplus 2} \xrightarrow{f_{3}} P_{1}^{\oplus 3}\right)$. Then, $\mu_{Y}^{-}\left(T_{212}\right) \notin 2$-silt Λ_{4}. To compute $\mu_{X}^{-}\left(T_{212}\right)$, we take a triangle

$$
X \xrightarrow{\pi} Y \longrightarrow \operatorname{cone}(\pi) \longrightarrow X[1] \text { with } \pi=\left(\binom{0}{e_{2}},\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right)\right) .
$$

Then, π is a minimal left $\operatorname{add}(Y)$-approximation. In fact, if we compose π with

then all elements of $\operatorname{Hom}_{\mathfrak{K}^{\mathrm{b}}\left(\operatorname{proj} \Lambda_{4}\right)}(X, Y)$ are obtained; if $\left(\begin{array}{ccc}k_{1} & k_{2} & 0 \\ 0 & k_{1} & -k_{2} \\ 0 & 0 & k_{1}\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1\end{array}\right)$, then $k_{1}=1$ and $k_{2}=0$. By applying Lemma 2.2.8 twice, we have

$$
\operatorname{cone}(\pi)=\left(P_{2} \xrightarrow{\left(\begin{array}{c}
-\mu \\
-\mu \beta \\
e_{2}
\end{array}\right)} P_{1}^{\oplus 2} \oplus P_{2}^{\oplus 2} \xrightarrow{\left(\begin{array}{cccc}
0 & 0 & \mu & 0 \\
1 & 0 & -\mu \beta & \mu \\
0 & 0 & \mu \beta
\end{array}\right)} P_{1}^{\oplus 3}\right) \sim_{h}\left(P_{2} \xrightarrow{\mu} P_{1}\right) .
$$

Thus, $\mu_{X}^{-}\left(T_{212}\right)=\left(P_{2} \xrightarrow{\mu} P_{1}\right) \oplus\left(P_{2}^{\oplus 2} \xrightarrow{f_{3}} P_{1}^{\oplus 3}\right)$.
(4) Let $T_{2121}=X \oplus Y:=\left(P_{2} \xrightarrow{\mu} P_{1}\right) \oplus\left(P_{2}^{\oplus 2} \xrightarrow{f_{3}} P_{1}^{\oplus 3}\right)$. Then, $\mu_{X}^{-}\left(T_{2121}\right) \notin 2$-silt Λ_{4}. To compute $\mu_{Y}^{-}\left(T_{2121}\right)$, we take a triangle

$$
Y \xrightarrow{\pi} X^{\oplus 3} \longrightarrow \operatorname{cone}(\pi) \longrightarrow Y[1] \text { with } \pi=\left(\left(\begin{array}{cc}
e_{2} & 0 \\
-\beta & e_{2} \\
0 & \beta
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right) .
$$

Then, π is a minimal left $\operatorname{add}(X)$-approximation since $\operatorname{End}_{\mathrm{K}^{\mathrm{b}}\left(\operatorname{proj} \Lambda_{4}\right)}(X)=K$. Then,

$$
\operatorname{cone}(\pi)=\left(P_{2}^{\oplus 2} \xrightarrow{\left(\begin{array}{ccc}
-\mu & 0 \\
\mu \beta & -\mu \\
0 & -\mu \beta \\
e_{2} & 0 \\
-\beta & e_{2} \\
0 & \beta
\end{array}\right)} P_{1}^{\oplus 3} \oplus P_{2}^{\oplus 3} \xrightarrow{\left(\begin{array}{cccccc}
1 & 0 & \mu & 0 & 0 \\
0 & 1 & 0 & 0 & \mu \\
0 & 1 & 0 & 0 & 0
\end{array}\right)} P_{1}^{\oplus 3}\right) \sim_{h}\left(P_{2} \longrightarrow 0\right) .
$$

Thus, $\mu_{Y}^{-}\left(T_{2121}\right)=\left(P_{2} \xrightarrow{\mu} P_{1}\right) \oplus\left(P_{2} \longrightarrow 0\right)$.
(5) Let $T_{21212}=X \oplus Y:=\left(P_{2} \xrightarrow{\mu} P_{1}\right) \oplus\left(P_{2} \longrightarrow 0\right)$. Then, it is clear that $\mu_{Y}^{-}\left(T_{21212}\right)$ does not belong to 2-silt Λ_{4} and $\mu_{X}^{-}\left(T_{21212}\right)=\left(P_{1} \longrightarrow 0\right) \oplus\left(P_{2} \longrightarrow 0\right)$.

To sum up the above, we deduce that $\mathcal{H}\left(2\right.$-silt $\left.\Lambda_{4}\right)$ is of type $\mathcal{H}_{1,5}$. By Theorem 2.2.6, this is equivalent to saying that $\mathcal{H}\left(s \tau\right.$-tilt $\left.\Lambda_{4}\right)$ is of type $\mathcal{H}_{1,5}$.

We point out that the Hasse quiver $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.\Lambda_{3}\right)$ is of type $\mathcal{H}_{1,3}$ as follows,

Lemma 3.1.3. The two-point algebra Λ_{5} is minimal τ-tilting infinite.
Proof. Note that Λ_{5} is a gentle algebra and it is representation-infinite by Hoshino and Miyachi's result [HM, Theorem A]. Besides, Plamondon [Pl, Theorem 1.1] showed that a gentle algebra is τ-tilting finite if and only if it is representation-finite. Therefore, Λ_{5} is τ-tilting infinite. For the minimality, we may consider

$$
\hat{\Lambda}_{5}:=\Lambda_{5} /<\alpha \mu \beta>
$$

since the socle of Λ_{5} is $K \alpha \mu \beta \oplus K \mu \beta \oplus K \beta$ and any proper quotient Λ_{5} / I of Λ_{5} satisfies $\alpha \mu \beta \in I$. We denote by P_{1} and P_{2} the indecomposable projective $\hat{\Lambda}_{5}$-modules, then

$$
P_{1}=\underset{\alpha \mu}{\alpha}{ }_{\mu \beta}^{e_{1}} \underset{\mu}{\mu} \simeq{\underset{2}{1}}_{1}^{2} \text { and } P_{2}=\underset{\beta}{e_{2}} \simeq \frac{2}{2} .
$$

We calculate the left mutation sequences starting from $P_{1} \oplus P_{2}$ and ending at 0 , so that $\mathcal{H}\left(\mathrm{s} \tau\right.$-tilt $\left.\hat{\Lambda}_{5}\right)$ is of type $\mathcal{H}_{1,4}$ as follows,

This implies that $\hat{\Lambda}_{5}$ is τ-tilting finite and Λ_{5} is minimal τ-tilting infinite.
Lemma 3.1.4. The two-point algebras $\Lambda_{7}, \Lambda_{8}, \Lambda_{9}$ and Λ_{10} are τ-tilting finite.
Proof. Since Λ_{7}, Λ_{8} and Λ_{9} are quotient algebras of Λ_{10}, it suffices to show that Λ_{10} is τ-tilting finite. The indecomposable projective modules of Λ_{10} are

$$
P_{1}=e_{1} \Lambda_{10}=\underset{\alpha^{\alpha^{2} \mu}}{\stackrel{\alpha}{\alpha \mu}} \stackrel{e_{1}}{\mu} \simeq{ }_{\frac{1}{2}}^{1}{ }_{2}^{\frac{1}{2}} \text { and } P_{2}=e_{2} \Lambda_{10}=\stackrel{e_{2}}{\nu \alpha \alpha^{2}} \simeq \underset{1}{\nu} \simeq
$$

Since $\operatorname{Hom}_{\Lambda_{10}}\left(P_{1}, P_{2}\right)=e_{2} \Lambda_{10} e_{1}=K \nu \oplus K \nu \alpha \oplus K \nu \alpha^{2}$ (resp., $\operatorname{Hom}_{\Lambda_{10}}\left(P_{2}, P_{1}\right)=e_{1} \Lambda_{10} e_{2}=$ $K \mu \oplus K \alpha \mu \oplus K \alpha^{2} \mu$), we know that the computation of the left mutation sequence started at P_{1} (resp., P_{2}) is similar to that of Λ_{4} (resp., $\Lambda_{4}^{\text {op }}$). Then, by Proposition 2.1.8 and the calculation in Lemma 3.1 .2 , we deduce that the Hasse quiver $\mathcal{H}\left(2\right.$-silt $\left.\Lambda_{10}\right)$ is as follows,

$$
\begin{aligned}
& \begin{array}{c}
{\left[\begin{array}{c}
0 \xrightarrow{\oplus} P_{1} \\
P_{2} \xrightarrow{\stackrel{ }{4}} P_{1}
\end{array}\right]} \\
\downarrow
\end{array}\left[\begin{array}{c}
P_{1} \xrightarrow{\oplus} \\
P_{1} \xrightarrow{\xrightarrow{\longrightarrow}} P_{2}
\end{array}\right]
\end{aligned}
$$

where $f_{1}=\left(\begin{array}{ccc}\alpha \mu & \mu & 0 \\ 0 & -\alpha \mu & \mu\end{array}\right), f_{2}=(\alpha \mu \mu), f_{3}=\left(\alpha^{2} \mu \alpha \mu \mu\right)$ and

$$
g_{1}=\left(\begin{array}{c}
\nu \\
\nu \alpha \\
\nu \alpha^{2}
\end{array}\right), g_{2}=\binom{\nu}{\nu \alpha}, g_{3}=\left(\begin{array}{cc}
\nu & 0 \\
-\nu \alpha & \nu \\
0 & \nu \alpha
\end{array}\right) .
$$

We conclude that $\mathcal{H}\left(\mathrm{s} \tau\right.$-tilt $\left.\Lambda_{10}\right) \simeq \mathcal{H}\left(2\right.$-silt $\left.\Lambda_{10}\right)$ is of type $\mathcal{H}_{5,5}$. Thus, $\Lambda_{7}, \Lambda_{8}, \Lambda_{9}$ and Λ_{10} are τ-tilting finite. Next, we determine the type of $\mathcal{H}\left(\mathrm{s} \tau\right.$-tilt $\left.\Lambda_{i}\right)$ for $i=7,8,9$.
(1) The indecomposable projective Λ_{7}-modules are

$$
P_{1}={ }_{\alpha \mu}^{\alpha}{ }^{e_{1}} \mu \text { and } P_{2}={ }_{\nu}^{e_{2}} .
$$

We give the Hasse quiver $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.\Lambda_{7}\right)$ by direct calculation as follows,

Then, $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.\Lambda_{7}\right)$ is of type $\mathcal{H}_{2,3}$.
(2) Similarly, the Hasse quiver $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.\Lambda_{8}\right)$ is given as follows,

Then, $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.\Lambda_{8}\right)$ is of type $\mathcal{H}_{3,3}$.
(3) Let Q_{1} and Q_{2} be the indecomposable projective Λ_{9}-modules. Then,

$$
Q_{1}=e_{1} \Lambda_{9}=\underset{\alpha^{\alpha^{2}} \mu}{\stackrel{\alpha \mu}{\alpha \mu}} \stackrel{e_{1}}{\mu} \simeq \frac{1}{2}{ }_{2}^{\frac{1}{2}}{ }^{\frac{1}{2}} \text { and } Q_{2}=e_{2} \Lambda_{9}=\stackrel{e_{\nu}}{\nu} \simeq \frac{2}{1} .
$$

Since $\operatorname{Hom}_{\Lambda_{9}}\left(Q_{1}, Q_{2}\right)=e_{2} \Lambda_{9} e_{1}=K \nu$ and $\operatorname{Hom}_{\Lambda_{9}}\left(Q_{2}, Q_{1}\right)=e_{1} \Lambda_{9} e_{2}=K \mu \oplus K \alpha \mu \oplus K \alpha^{2} \mu$, the computation of the left mutation sequence started at Q_{2} is similar to that of $\Lambda_{4}^{\mathrm{op}}$. Then, by Proposition 2.1.8 and the calculation in Lemma 3.1.2, we deduce that $\mathcal{H}\left(2\right.$-silt $\left.\Lambda_{9}\right)$ is presented as follows,

$$
\begin{aligned}
& {\left[\begin{array}{c}
Q_{2}^{\oplus 3} \stackrel{f_{1}}{\stackrel{f_{1}}{\oplus}} Q_{1}^{\oplus 2} \\
Q_{2} \xrightarrow{\mu} Q_{1}
\end{array}\right] \rightarrow\left[\begin{array}{c}
Q_{2}^{\oplus 3} \stackrel{f_{1}}{\oplus} Q_{1}^{\oplus 2} \\
Q_{2}^{\oplus 2} \xrightarrow{\oplus} \xrightarrow{\stackrel{~}{2}} Q_{1}
\end{array}\right] \rightarrow\left[\begin{array}{c}
Q_{2}^{\oplus 3} \stackrel{f_{3}}{\stackrel{f_{3}}{\oplus}} Q_{1} \\
Q_{2}^{\oplus 2} \xrightarrow{f_{2}} Q_{1}
\end{array}\right] \rightarrow\left[\begin{array}{c}
Q_{2}^{\oplus 3} \stackrel{f_{3}}{\longrightarrow} Q_{1} \\
Q_{2} \xrightarrow{\oplus} 0
\end{array}\right] \rightarrow\left[\begin{array}{l}
Q_{1} \rightarrow 0 \\
Q_{2} \xrightarrow{\oplus} 0
\end{array}\right]}
\end{aligned}
$$

where $f_{1}=\left(\begin{array}{ccc}\alpha \mu & \mu & 0 \\ 0 & -\alpha \mu & \mu\end{array}\right), f_{2}=(\alpha \mu \mu)$ and $f_{3}=\left(\alpha^{2} \mu \alpha \mu \mu\right)$. By Theorem 2.2.6, we conclude that $\mathcal{H}\left(\right.$ s τ-tilt $\left.\Lambda_{9}\right) \simeq \mathcal{H}\left(2\right.$-silt $\left.\Lambda_{9}\right)$ is of type $\mathcal{H}_{2,5}$.

Lemma 3.1.5. The two-point algebras Λ_{11} and Λ_{12} are τ-tilting finite.
Proof. We calculate the Hasse quiver $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.\Lambda_{11}\right)$ directly as follows,

Similarly, the Hasse quiver $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.\Lambda_{12}\right)$ is shown as follows,

Then, the statement follows from Proposition 2.1.6.
We summarize the results in this section as follows. We know that Λ_{2} and Λ_{5} are minimal τ-tilting infinite. For others, we have

Λ_{i}	Λ_{1}	Λ_{3}	Λ_{4}	Λ_{6}	Λ_{7}	Λ_{8}	Λ_{9}	Λ_{10}	Λ_{11}	Λ_{12}
\#s τ-tilt Λ_{i}	5	6	8	6	7	8	9	12	8	8
Type	$\mathcal{H}_{1,2}$	$\mathcal{H}_{1,3}$	$\mathcal{H}_{1,5}$	$\mathcal{H}_{2,2}$	$\mathcal{H}_{2,3}$	$\mathcal{H}_{3,3}$	$\mathcal{H}_{2,5}$	$\mathcal{H}_{5,5}$	$\mathcal{H}_{3,3}$	$\mathcal{H}_{2,4}$

3.2 Minimal wild two-point algebras

In this section, we can solve the question we mentioned at the beginning of this chapter. We first recall the complete classification for the representation type of two-point algebras. A complete list of (strongly) minimal wild two-point algebras is given by Han Han, which is displayed by Table W in his paper. (See also Appendix A.1 of this thesis.)

Proposition 3.2.1 ([Han, Theorem 1]). Let A be a two-point algebra. Up to isomorphism and duality, A is representation-finite or tame if and only if A degenerates to a quotient algebra of an algebra from Table 巩, and A is wild if and only if A has a minimal wild algebra from Table W as a quotient algebra.

Proposition 3.2.2 ([Han, Theorem 2]). A two-point algebra A is strongly minimal wild if and only if it is one of the algebras $W_{2} \sim W_{34}$ in Table W.

Now, we are able to state our first result in this chapter.

[^1]Theorem 3.2.3. Let W_{i} be a minimal wild two-point algebra from Table W. Then,
(1) W_{1}, W_{2}, W_{3} and W_{5} are τ-tilting infinite.
(2) Others are τ-tilting finite. Moreover, we have

W_{i}	W_{4}	W_{6}	W_{7}	W_{8}	W_{9}	W_{10}	W_{11}	W_{12}	W_{13}	W_{14}
$\# \mathbf{s} \tau$-tilt W_{i}	5	6	8		6		7	5		10
Type	$\mathcal{H}_{1,2}$	$\mathcal{H}_{1,3}$	$\mathcal{H}_{1,5}$		$\mathcal{H}_{1,3}$		$\mathcal{H}_{1,4}$	$\mathcal{H}_{1,2}$		$\mathcal{H}_{3,5}$
W_{i}	W_{15}	W_{16}	W_{17}	W_{18}	W_{19}	W_{20}	W_{21}	W_{22}	W_{23}	W_{24}
\#s τ-tilt W_{i}	9	8	9	8	7				8	10
Type	$\mathcal{H}_{2,5}$	$\mathcal{H}_{3,3}$	$\mathcal{H}_{2,5}$	$\mathcal{H}_{3,3}$	$\mathcal{H}_{2,3}$				$\mathcal{H}_{3,3}$	$\mathcal{H}_{3,5}$
W_{i}	W_{25}	W_{26}	W_{27}	W_{28}	W_{29}	W_{30}	W_{31}	W_{32}	W_{33}	W_{34}
\# \mathbf{s} - -tilt W_{i}	7		8				6			
Type	$\mathcal{H}_{2,3}$		$\mathcal{H}_{2,4}$	$\mathcal{H}_{3,3}$		$\mathcal{H}_{2,4}$	$\mathcal{H}_{2,2}$			

where the type of $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.W_{i}\right)$ is defined in the beginning of this chapter.
Proof. First, one can easily find that W_{1}, W_{2}, W_{3} and W_{5} have Λ_{2} as a quotient algebra and therefore, they are τ-tilting infinite. It is also not difficult to find that W_{4} is τ-tilting finite and the Hasse quiver $\mathcal{H}\left(\mathrm{s} \tau\right.$-tilt $\left.W_{4}\right)$ is of type $\mathcal{H}_{1,2}$ as follows,

W_{i}	I	A
W_{6}	α^{2}	$\Lambda_{3}^{\text {op }}$
W_{7}	α^{3}	$\Lambda_{4}^{\text {op }}$
W_{8}	α	Λ_{4}
W_{9}	α, β^{2}	Λ_{3}
W_{10}		
W_{11}	β^{2}	$\hat{\Lambda}_{5}$
W_{12}	α, β	Λ_{1}
W_{13}		
W_{15}	$\nu \mu$	$\Lambda_{9}^{\text {op }}$
W_{16}	$\alpha^{2}, \nu \mu$	Λ_{8}
W_{17}	α^{3}	$\Lambda_{9}^{\text {op }}$
W_{18}	α^{2}	Λ_{8}
W_{19}		Λ_{7}
W_{20}	$\mu \nu+\nu \mu$	

W_{i}	I	A
W_{21}	$\alpha \mu \nu$	Λ_{7}
W_{22}	$\alpha^{2}, \mu \nu$	
W_{23}	$\alpha^{2}+\nu \mu, \nu \alpha \mu$	Λ_{8}
W_{24}	$\mu \nu$	$\widetilde{W}_{14}^{\text {op }}$
W_{25}	α^{2}, β	Λ_{7}
W_{26}	$\alpha, \mu \nu$	$\Lambda_{7}^{\text {op }}$
W_{27}	$\mu \nu$	$\Lambda_{12}^{\text {op }}$
W_{28}		Λ_{11}
W_{29}		$\Lambda_{11}^{\text {op }}$
W_{30}		Λ_{12}
W_{31}	$\alpha+\beta, \nu \mu$	Λ_{6}
W_{32}	$\alpha+\beta, \nu \mu, \mu \nu$	
W_{33}	$\alpha+\beta$	
W_{34}	$\alpha+\beta, \mu \nu$	

Second, we show that $W_{6} \sim W_{34}$ (except for W_{14}) are τ-tilting finite by determining the type of $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.W_{i}\right)$ for $i=6,7, \ldots, 34(i \neq 14)$. In order to do this, we can apply Proposition 2.3.6 to construct a two-sided ideal I generated by elements in $C\left(W_{i}\right) \cap \operatorname{rad}\left(W_{i}\right)$ such that $\mathbf{s} \tau$-tilt $A \simeq \mathbf{s} \tau$-tilt $\left(W_{i} / I\right)$. Then, we can find the type of $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.W_{i}\right)$ following Table Λ. Here, we compute the center of an algebra by GAP as shown above, see GAP. In particular, we point out that although $\Lambda_{7} \nsucceq \widetilde{W}_{21}:=W_{21} / I$, but s τ-tilt $\Lambda_{7} \simeq \mathrm{~s} \tau$-tilt \widetilde{W}_{21}. To see the latter one, one may check that $\nu \mu+\mu \nu \in C\left(\widetilde{W}_{21}\right)$ and therefore,

$$
\mathbf{s} \tau \text {-tilt } \widetilde{W}_{21} \simeq \mathrm{~s} \tau \text {-tilt }\left(\widetilde{W}_{21} /<\mu \nu, \nu \mu>\right) \simeq \mathbf{s} \tau \text {-tilt } \Lambda_{7} \text {. }
$$

Last, we look at the case W_{14}. Note that $\nu \alpha \mu \in C\left(W_{14}\right)$ and the indecomposable projective modules of $\widetilde{W}_{14}:=W_{14} /\langle\nu \alpha \mu\rangle$ are

$$
P_{1}={ }_{\alpha^{2}}{ }^{\alpha}{ }_{\alpha \mu}^{e_{1}}{ }_{\mu}^{\mu} \text { and } P_{2}=\stackrel{\substack{e_{2} \\ \nu \alpha \\ \nu \alpha^{2}}}{\underbrace{2}} .
$$

Then, we find that \widetilde{W}_{14} is a quotient algebra of Λ_{10} by $\alpha^{2} \mu$. Thus, by similar calculation with Λ_{10} in the proof of Lemma 3.1.4, one can check that $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.\widetilde{W}_{14}\right)$ is of type $\mathcal{H}_{3,5}$. By Proposition 2.3.6, we deduce that $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.W_{14}\right) \simeq \mathcal{H}\left(\mathrm{s} \tau\right.$-tilt $\left.\widetilde{W}_{14}\right)$ is of type $\mathcal{H}_{3,5}$.

Consequently, we can finish the first step toward the complete classification of τ-tilting finite two-point algebras.

Corollary 3.2.4. A strongly minimal wild two-point algebra A is τ-tilting finite if and only if it does not contain the Kronecker algebra Λ_{2} as a quotient algebra.

Similarly, we have the following result for algebras in Table T.
Theorem 3.2.5. Let T_{i} be an algebra from Table T.
(1) T_{1}, T_{3} and T_{17} are τ-tilting infinite.
(2) Others are τ-tilting finite. Moreover, we have the following posets,

T_{i}	T_{2}	T_{4}	T_{5}	T_{6}	T_{7}	T_{8}	T_{9}	T_{10}	T_{11}
\#s τ-tilt T_{i}	6		5	6	5		8	12	8
Type	$\mathcal{H}_{1,3}$	$\mathcal{H}_{1,2}$	$\mathcal{H}_{1,3}$	$\mathcal{H}_{1,2}$		$\mathcal{H}_{3,3}$	$\mathcal{H}_{5,5}$	$\mathcal{H}_{3,3}$	
T_{i}	T_{12}	T_{13}	T_{14}	T_{15}	T_{16}	T_{18}	T_{19}	T_{20}	T_{21}
\#s τ-tilt T_{i}	7	6	8	7	9	8	6	7	6
Type	$\mathcal{H}_{2,3}$	$\mathcal{H}_{2,2}$	$\mathcal{H}_{3,3}$	$\mathcal{H}_{2,3}$	$\mathcal{H}_{2,5}$	$\mathcal{H}_{3,3}$	$\mathcal{H}_{2,2}$	$\mathcal{H}_{2,3}$	$\mathcal{H}_{2,2}$

Proof. Similar to the proof of Theorem 3.2 .3 , one can check that T_{1} has Λ_{2} as a quotient algebra, T_{3} and T_{17} have Λ_{5} as a quotient algebra. Hence, T_{1}, T_{3} and T_{17} are τ-tilting infinite. We may also distinguish the following cases.

Case $\left(T_{9}\right)$. Since $\nu \mu, \alpha \mu \nu+\mu \nu \alpha+\nu \alpha \mu \in C\left(T_{9}\right)$ and $\alpha \mu \nu \in C\left(\widetilde{T}_{9}\right)$ with

$$
\widetilde{T}_{9}:=T_{9} /<\nu \mu, \nu \alpha \mu, \alpha \mu \nu+\mu \nu \alpha>.
$$

Then, we have $\mu \nu \in C\left(\widetilde{T}_{9} /<\alpha \mu \nu>\right)$ and therefore,

$$
\mathbf{s} \tau \text {-tilt } T_{9} \simeq \mathbf{s} \tau \text {-tilt }\left(T_{9} /<\mu \nu, \nu \mu, \nu \alpha \mu>\right) \simeq \mathbf{s} \tau \text {-tilt } \Lambda_{8} .
$$

Case $\left(T_{20}\right)$. For any $k \in K /\{0\}$, we have $\mu \nu+\nu \mu \in C\left(T_{20}\right)$ such that

$$
\mathbf{s} \tau \text {-tilt } T_{20} \simeq \mathbf{s} \tau \text {-tilt } \widetilde{T}_{20} \text { with } \widetilde{T}_{20}:=T_{20} /<\mu \nu, \nu \mu>.
$$

Then, the indecomposable projective \widetilde{T}_{20}-modules are

$$
P_{1}={ }^{\alpha}{ }_{\mu \beta}^{e_{1}}{ }^{\mu} \text { and } P_{2}=\beta{ }_{\nu \alpha}^{e_{2}},
$$

and the Hasse quiver $\mathcal{H}\left(2\right.$-silt $\left.\widetilde{T}_{20}\right)$ is given as follows,

Thus, $\mathcal{H}\left(\mathrm{s} \tau\right.$-tilt $\left.T_{20}\right) \simeq \mathcal{H}\left(\mathrm{s} \tau\right.$-tilt $\left.\widetilde{T}_{20}\right)$ is of type $\mathcal{H}_{2,3}$.
Case $\left(T_{21}\right)$. For any $k_{1}, k_{2} \in K /\{0\}$, we have $\mu \nu+\nu \mu \in C\left(T_{21}\right)$. Similarly, we have $\mathbf{s} \tau$-tilt $T_{21} \simeq \mathbf{s} \tau$-tilt $\left(T_{21} /\langle\mu \nu, \nu \mu\rangle\right)$ and the corresponding Hasse quiver is of type $\mathcal{H}_{2,2}$.

For the remaining cases, we may apply Proposition 2.3 .6 to construct a two-sided ideal I generated by elements in $C\left(T_{i}\right) \cap \operatorname{rad}\left(T_{i}\right)$ such that $\mathbf{s} \tau$-tilt $B \simeq \mathbf{s} \tau$-tilt $\left(T_{i} / I\right)$, as follows,

T_{i}	I	B
T_{2}	α^{2}	$\Lambda_{3}^{\text {op }}$
T_{4}	β	
T_{5}	α, β	Λ_{1}
T_{6}	$\alpha+\beta^{2}$	Λ_{3}
T_{7}	$\alpha+\beta$	Λ_{1}
T_{8}		
T_{10}	$\nu \alpha^{2} \mu$	Λ_{10}
T_{11}	$\alpha^{2}, \nu \alpha \mu$	Λ_{8}

T_{i}	I	B
T_{12}	$\alpha^{2}, \nu \mu$	Λ_{7}
T_{13}	$\alpha, \mu \nu+\nu \mu$	Λ_{6}
T_{14}	$\alpha^{2}+\nu \mu$	Λ_{8}
T_{15}	$\alpha^{2}, \nu \mu$	Λ_{7}
T_{16}	$\mu \nu$	Λ_{9}
T_{18}	$\beta, \nu \alpha \mu+$	\widetilde{T}
$\alpha \mu \nu+\mu \nu \alpha$		
T_{19}	$\alpha, \beta, \mu \nu+\nu \mu$	Λ_{6}

3.3 Other applications

At the end of this chapter, we give two easy observations. First, we determine the τ-tilting finiteness of two-point symmetric special biserial algebras. We refer to [Sc] for the basic concepts and properties of symmetric special biserial algebras, or equivalently, Brauer graph algebras. In AIP], the authors classified two-point symmetric special biserial algebras up to Morita equivalence, so that we can determine their τ-tilting finiteness.

Proposition 3.3.1 (【AIP, Theorem 7.1]). Let A be a two-point symmetric special biserial algebra. Then, A is Morita equivalent to one of $B_{i}=K Q / I_{i}$ below, where $m, n, r \in \mathbb{N}$.

$$
Q: \circ \stackrel{\mu}{\underset{\nu}{\rightleftarrows}} \circ \quad I_{1}:(\mu \nu)^{n} \mu=(\nu \mu)^{n} \nu=0, n \geqslant 1 .
$$

$$
I_{2}: \alpha \mu=\nu \alpha=0, \alpha^{m}=(\mu \nu)^{n}, m \geqslant 2, n \geqslant 1 .
$$

$$
I_{3}: \alpha^{2}=\nu \mu=0,(\alpha \mu \nu)^{n}=(\mu \nu \alpha)^{n}, n \geqslant 1
$$

$$
Q: \circ \stackrel{\mu_{1}, \mu_{2}}{\stackrel{\nu_{1}, \nu_{2}}{\leftrightarrows}} \circ
$$

$$
I_{4}: \mu_{1} \nu_{2}=\nu_{2} \mu_{1}=\mu_{2} \nu_{1}=\nu_{1} \mu_{2}=0
$$

$$
\left(\mu_{1} \nu_{1}\right)^{m}=\left(\mu_{2} \nu_{2}\right)^{n},\left(\nu_{1} \mu_{1}\right)^{m}=\left(\nu_{2} \mu_{2}\right)^{n}, m, n \geqslant 1
$$

$$
I_{5}: \mu_{1} \nu_{2}=\nu_{1} \mu_{1}=\mu_{2} \nu_{1}=\nu_{2} \mu_{2}=0
$$

$$
\left(\mu_{1} \nu_{1} \mu_{2} \nu_{2}\right)^{n}=\left(\mu_{2} \nu_{2} \mu_{1} \nu_{1}\right)^{n},\left(\nu_{1} \mu_{2} \nu_{2} \mu_{1}\right)^{n}=\left(\nu_{2} \mu_{1} \nu_{1} \mu_{2}\right)^{n}, n \geqslant 1
$$

$$
Q: \alpha \subset \circ \stackrel{\mu}{\underset{\nu}{\rightleftharpoons}} 0 \bigcirc \beta
$$

$$
I_{6}: \alpha \mu=\mu \beta=\beta \nu=\nu \alpha=0, \alpha^{m}=(\mu \nu)^{n}, \beta^{r}=(\nu \mu)^{n}, m, r \geqslant 2, n \geqslant 1
$$

$$
I_{7}: \alpha^{2}=\nu \mu=\mu \beta=\beta \nu=0,(\alpha \mu \nu)^{n}=(\mu \nu \alpha)^{n}, \beta^{m}=(\nu \alpha \mu)^{n}, m \geqslant 2, n \geqslant 1
$$

$$
I_{8}: \alpha^{2}=\beta^{2}=\mu \nu=\nu \mu=0,(\nu \alpha \mu \beta)^{n}=(\beta \nu \alpha \mu)^{n},(\alpha \mu \beta \nu)^{n}=(\mu \beta \nu \alpha)^{n}, n \geqslant 1
$$

Then, we have the following observation.
Proposition 3.3.2. Let B_{i} be a two-point symmetric special biserial algebra. Then, B_{i} is τ-tilting finite if $i=1,2,3,6,7 ; \tau$-tilting infinite if $i=4,5,8$. Moreover, we have

B_{i}	B_{1}	B_{2}	B_{3}	B_{6}	B_{7}
\#s τ-tilt B_{i}	6	8	6	8	
Type	$\mathcal{H}_{2,2}$	$\mathcal{H}_{3,3}$	$\mathcal{H}_{2,2}$	$\mathcal{H}_{3,3}$	

Proof. One can easily check that B_{4} and B_{5} have Λ_{2} as a quotient algebra, and B_{8} has Λ_{5} as a quotient algebra. Therefore, B_{4}, B_{5} and B_{8} are τ-tilting infinite.

Next, we show the remaining case by case.
Case $\left(B_{1}\right)$. If $n=1$, then $\mu \nu, \nu \mu \in C\left(B_{1}\right)$. If $n \geqslant 2$, then $\mu \nu+\nu \mu \in C\left(B_{1}\right)$. Both of them satisfy $\mathbf{s} \tau$-tilt $B_{1} \simeq \mathbf{s} \tau$-tilt $\left(B_{1} /<\mu \nu, \nu \mu>\right) \simeq \mathbf{s} \tau$-tilt Λ_{6}.

Case $\left(B_{2}\right)$. If $n=1$, then $\alpha, \nu \mu \in C\left(B_{2}\right)$. If $n \geqslant 2$, then $\alpha, \mu \nu+\nu \mu \in C\left(B_{2}\right)$. Both of them satisfy $\mathbf{s} \tau$-tilt $B_{2} \simeq \mathbf{s} \tau$-tilt $\left(B_{2} /<\alpha, \mu \nu, \nu \mu>\right) \simeq \mathbf{s} \tau$-tilt Λ_{6}.

Case $\left(B_{3}\right)$. If $n=1$, then $\mu \nu, \nu \alpha \mu \in C\left(B_{3}\right)$. If $n \geqslant 2$, then $\alpha \mu \nu+\mu \nu \alpha+\nu \alpha \mu \in C\left(B_{3}\right)$ and $\alpha \mu \nu \in C\left(\widetilde{B}_{3}\right)$ such that $\mu \nu \in C\left(\widetilde{B}_{3} /<\alpha \mu \nu>\right)$, where

$$
\widetilde{B}_{3}:=B_{3} /<\nu \alpha \mu, \alpha \mu \nu+\mu \nu \alpha>.
$$

Hence, $\mathbf{s} \tau$-tilt $B_{3} \simeq \mathbf{s} \tau$-tilt $\left(B_{3} /<\mu \nu, \nu \alpha \mu>\right) \simeq \mathbf{s} \tau$-tilt Λ_{8}.
Case $\left(B_{6}\right)$. If $n=1$, then $\alpha, \beta \in C\left(B_{6}\right)$. If $n \geqslant 2$, then $\alpha, \beta, \mu \nu+\nu \mu \in C\left(B_{6}\right)$. Both of them satisfy $\mathbf{s} \tau$-tilt $B_{6} \simeq \mathbf{s} \tau$-tilt $\left(B_{6} /\langle\alpha, \beta, \mu \nu, \nu \mu\rangle\right) \simeq \mathbf{s} \tau$-tilt Λ_{6}.

Case $\left(B_{7}\right)$. If $n=1$, then $\beta, \mu \nu \in C\left(B_{7}\right)$. If $n \geqslant 2$, then $\beta, \alpha \mu \nu+\mu \nu \alpha+\nu \alpha \mu \in C\left(B_{7}\right)$ and $\alpha \mu \nu \in C\left(\widetilde{B}_{7}\right)$ such that $\mu \nu \in C\left(\widetilde{B}_{7} /<\alpha \mu \nu>\right)$, where

$$
\widetilde{B}_{7}:=B_{7} /<\beta, \nu \alpha \mu, \alpha \mu \nu+\mu \nu \alpha>.
$$

Thus, $\mathbf{s} \tau$-tilt $B_{7} \simeq \mathbf{s} \tau$-tilt $\left(B_{7} /<\beta, \mu \nu, \nu \alpha \mu>\right) \simeq \mathbf{s} \tau$-tilt Λ_{8}.
Second, we have the following observation.
Proposition 3.3.3. Let A be a connected two-point algebra without loops. Then, A is τ-tilting finite if and only if it is representation-finite.

Proof. By our assumption, the quiver Q of A does not contain loops. If Q contains multiple arrows, then A has the Kronecker algebra Λ_{2} as a quotient algebra and hence, A is τ-tilting infinite. Then, we deduce that if A is τ-tilting finite, then Q is either $\circ \rightleftarrows 0$ or $\circ \longrightarrow 0$. On the other hand, any finite-dimensional algebra with quiver $\circ \rightleftarrows 0$ or $\circ \longrightarrow 0$ is representation-finite from Bongartz and Gabriel [BoG].

Chapter 4

Simply Connected Algebras

In this chapter, we focus on the class of simply connected algebras, which contains the algebras presented by a triangle quiver or a rectangle quiver with all possible commutativity relations as special cases.

Triangle quiver

Rectangle quiver

The notion of simply connected algebras was first introduced by Bongartz and Gabriel [BoG, Section 6] in representation-finite cases. The importance of these algebras is that we can reduce the representation theory of an arbitrary representation-finite algebra A to that of a representation-finite simply connected algebra B. More precisely, for any representation-finite algebra A, the indecomposable A-modules can be lifted to indecomposable B-modules over a simply connected algebra B, which is contained inside a certain Galois covering of the standard form \widetilde{A} of A, see Proposition 4.1.2 for details.

Soon after, Assem and Skowroński AS, Section 1.2] introduced the definition for an arbitrary algebra to be simply connected. In the case of representation-finite algebras, this new definition coincides with the definition in [BoG]. So we take this new definition in this thesis (see Definition 4.1.1). Then, the class of simply connected algebras is rather large. For example, it includes tree algebras, tubular algebras, iterated tilted algebras of Euclidean type $\widetilde{\mathbb{D}}_{n}(n \geqslant 4), \widetilde{\mathbb{E}}_{6}, \widetilde{\mathbb{E}}_{7}, \widetilde{\mathbb{E}}_{8}$ and so on.

In particular, a subclass of simply connected algebras has been extensively investigated, which is called strongly simply connected algebras and introduced by Skowroński Sk1. It is shown in [BrG, Corollary 2.8] that simply connectedness and strongly simply connectedness
coincide in the case of representation-finite algebras. Then, the hierarchy (in terms of domestic, polynomial growth and wild) of representation-infinite strongly simply connected algebras has been completely determined, see [B3], BPS], [NS1], [NS2], [Pe] and [Sk2]. We have reviewed these results in Proposition 4.1.12. We point out that there are some inclusions as follows,
\{Simply connected algebras\}

$$
\left.\begin{array}{rl}
\supseteq\{\text { Strongly simply connected algebras }\} \\
& \supseteq\{\text { Staircase algebras }\} \cup\{\text { Shifted-staircase algebras }\} \\
& \supseteq\left\{\begin{array}{c}
\text { Algebras presented by a triangle or a rectangle }
\end{array}\right\} \\
\text { quiver with all possible commutativity relations }
\end{array}\right\} .
$$

In the first section, we review the definition of (strongly) simply connected algebras as well as the definitions of critical algebras and Tits forms. In the second section, we show that a simply connected algebra is τ-tilting finite if and only if it is representation-finite. This allows us to determine the τ-tilting finiteness for several classes of algebras, such as tubular algebras, hypercritical algebras and locally hereditary algebras. In particular, we get a complete list of τ-tilting finite sincere simply connected algebras. In the last section, we completely determine the τ-tilting finiteness for algebras presented by a triangle or a rectangle quiver with all possible commutativity relations.

4.1 Basic definitions

Let $A \simeq K Q / I$ be an algebra with $Q=\left(Q_{0}, Q_{1}\right)$ over an algebraically closed field K. We may regard $K Q / I$ as a K-category (see [BoG, Section 2]) which the class of objects is the set Q_{0}, and the class of morphisms from i to j is the K-vector space $K Q(i, j)$ of linear combinations of paths in Q with source i and target j, modulo the subspace $I(i, j):=I \cap K Q(i, j)$. We recall some well-known definitions without further reference.

- A is called triangular if Q does not have oriented cycles and loops.
- A is called sincere if there exists an indecomposable A-module M such that all simple A-modules appear in M as composition factors. Otherwise, A is called non-sincere.
- A subcategory B of A is said to be full if for any $i, j \in Q_{B}$, every morphism $f: i \rightarrow j$ in A is also in B; a full subcategory B of A is called convex if any path in Q_{A} with source and target in Q_{B} lies entirely in Q_{B}.
- A relation $\rho=\sum_{i=1}^{n} \lambda_{i} \omega_{i} \in I$ with $\lambda_{i} \neq 0$ is called minimal if $n \geqslant 2$ and for each non-empty proper subset $J \subset\{1,2, \ldots, n\}$, we have $\sum_{j \in J} \lambda_{j} \omega_{j} \notin I$.

We introduce the definition of simply connected algebras as follows. Here, we follow the constructions in AS, Section 1.2]. Let $A \simeq K Q / I$ be a triangular algebra with a connected quiver $Q=\left(Q_{0}, Q_{1}, s, t\right)$ and an admissible ideal I. For each arrow $\alpha \in Q_{1}$, let α^{-}be its formal inverse with $s\left(\alpha^{-}\right)=t(\alpha)$ and $t\left(\alpha^{-}\right)=s(\alpha)$. Then, we define $Q_{1}^{-}:=\left\{\alpha^{-} \mid \alpha \in Q_{1}\right\}$.

A walk is a formal composition $w=w_{1} w_{2} \cdots w_{n}$ with $w_{i} \in Q_{1} \cup Q_{1}^{-}$for all $1 \leqslant i \leqslant n$. We have $s(w)=s\left(w_{1}\right), t(w)=t\left(w_{n}\right), s\left(w_{i}\right)=t\left(w_{i-1}\right)$ for all $i>1$ and we denote by 1_{x} the trivial path at vertex x. For two walks w and u with $s(u)=t(w)$, the composition $w u$ is defined in the obvious way. In particular, $w=1_{s(w)} w=w 1_{t(w)}$. Then, let \sim be the smallest equivalence relation on the set of all walks in Q satisfying the following conditions:
(1) For each $\alpha: x \rightarrow y$ in Q_{1}, we have $\alpha \alpha^{-} \sim 1_{x}$ and $\alpha^{-} \alpha \sim 1_{y}$.
(2) For each minimal relation $\sum_{i=1}^{n} \lambda_{i} \omega_{i}$ in I, we have $\omega_{i} \sim \omega_{j}$ for all $1 \leqslant i, j \leqslant n$.
(3) If u, v, w and w^{\prime} are walks and $u \sim v$, then we have $w u w^{\prime} \sim w v w^{\prime}$ whenever these compositions are defined.

We denote by $[w]$ the equivalence class of a walk w. Clearly, the product $w u$ of two walks w and u induces a product $[w] \cdot[u]$ of $[w]$ and $[u]$. Note that $[w u]=[w] \cdot[u]$.

For a given $x \in Q_{0}$, the set $\Pi_{1}(Q, I, x)$ of equivalence classes of all walks w with $s(w)=t(w)=x$ becomes a group via the above product. Since Q is connected, we can always find a walk u from x to y for two different vertices x and y, so that we can define an isomorphism from $\Pi_{1}(Q, I, x)$ to $\Pi_{1}(Q, I, y)$ by $[w] \longrightarrow[u]^{-1} \cdot[w] \cdot[u]$. This implies that $\Pi_{1}(Q, I, x)$ is independent of the choice of x, up to isomorphism. Then, the fundamental group of (Q, I) is defined by

$$
\Pi_{1}(Q, I):=\Pi_{1}(Q, I, x)
$$

Definition 4.1.1 ([AS, Definition 1.2]). A triangular algebra A is called simply connected if, for any presentation $A \simeq K Q / I$ as a bound quiver algebra, the fundamental group $\Pi_{1}(Q, I)$ is trivial.

It follows from [BrG, (1.2)] and [MP, (4.3)] that if A is moreover representation-finite, the above definition coincides with the original definition introduced by Bongartz and Gabriel [BoG, Section 6] that A is simply connected if the Auslander-Reiten quiver of A is simply connected. Let $\Gamma(\bmod A)$ be the Auslander-Reiten quiver of A, which can be considered as a path category $K \Gamma(\bmod A)$. For any indecomposable non-projective A-module M, we have the following sequence in $\Gamma(\bmod A)$,

We define $\sigma_{M}:=\sum_{i=1}^{n} \alpha_{i}^{+} \alpha_{i}^{-}$and the mesh-category $m(\Gamma(\bmod A)):=K \Gamma(\bmod A) / I_{\Gamma_{A}}$, which is bounded by the mesh-ideal $I_{\Gamma_{A}}:=\left\langle\sigma_{M} \mid \tau M \neq 0\right\rangle$. Then, the standard form \widetilde{A} of A (see [BrG, (3.1)]) is defined to be the full subcategory consisting of all projective points of the mesh-category $m(\Gamma(\bmod A))$. Besides, \widetilde{A} is also representation-finite and $\Gamma(\bmod \widetilde{A})=\Gamma(\bmod A)$, see BoG, Corollary 5.2$]$ for details. We can see the importance of simply connected algebras in the following proposition.

Proposition 4.1.2 ([BrG, Section 3]). Let $A=K Q_{A} / I_{A}$ be a representation-finite algebra. Then, the standard form \widetilde{A} is Morita equivalent to A and \widetilde{A} admits a Galois covering $F: B \rightarrow B / G:=\widetilde{A}$, where B is simply connected and G is the fundamental group $\Pi_{1}\left(Q_{A}, I_{A}\right)$, which is a finitely generated free group.

It is worth mentioning that any representation-finite simply connected algebra is standard ${ }^{1}$ by [BoG, (6.1)] and therefore, $B=\widetilde{A}$ if A is simply connected in the above.

Example 4.1.3 ([Ass2, Example 2.2]). We give some examples.
(1) All tree algebras are simply connected.
(2) A hereditary algebra $K Q$ is simply connected if and only if Q is a tree.

Next, we look at a subclass of simply connected algebras, which has been studied extensively by quiver and relations.

Definition 4.1.4 ([Sk1, (2.2)]). A triangular algebra A is called strongly simply connected if every convex subcategory of A is simply connected.

We may distinguish the representation-finite cases as follows.
Proposition 4.1.5 ([BrG, Corollary 2.8]). Let A be a representation-finite triangular algebra. Then, A is simply connected if and only if A is strongly simply connected.

Example 4.1.6. We have the following examples.
(1) All tree algebras are strongly simply connected.
(2) Completely separating algebras are strongly simply connected, see Dra.
(3) A hereditary algebra $K Q$ is strongly simply connected if and only if Q is a tree.
(4) Let $A:=K Q / I$ with $I:=<\alpha \beta-\gamma \delta, \alpha \lambda-\gamma \mu>$ and the following quiver Q :

Then, A is simply connected but not strongly simply connected, see Ass2].
We recall the separation property of a triangular algebra $A \simeq K Q / I$, which provides a sufficient condition for A to be simply connected. We denote by P_{i} the indecomposable projective module at vertex i and rad P_{i} its radical. Then, P_{i} is said to have a separated radical (e.g., ASS, IX, Definition 4.1]) if rad P_{i} is a direct sum of pairwise non-isomorphic indecomposable modules whose supports are contained in pairwise different connected components of $Q(i)$, where $Q(i)$ is the subquiver of Q obtained by deleting all vertices of Q being a source of a path in Q with target i (including the trivial path from i to i). We say that A satisfies the separation property if every indecomposable projective A-module P has a separated radical.

[^2]Proposition 4.1.7 ([Sk1, (2.3), (4.1)]). Let A be a triangular algebra.
(1) If A satisfies the separation property, then it is simply connected.
(2) A is strongly simply connected if and only if every convex subcategory of A (or $A^{o p}$) satisfies the separation property.

Note that the above condition provides a large class of examples of simply connected algebras. We recall that the one-point extension $B=A[M]$ of A by an A-module M is defined by

$$
B=A[M]:=\left[\begin{array}{cc}
A & 0 \\
M & K
\end{array}\right] .
$$

If A is simply connected and $M=\operatorname{rad} P$ is a separated radical of an indecomposable projective B-module P, then B is also simply connected following [Ass2, Lemma 2.3].

We point out that the characterization of strongly simply connected algebras has been extensively investigated, even though it is not easy to recognize whether a given algebra is simply connected or not.

Proposition 4.1.8 ([AL, Theorem 1.3], [Sk1, (4.1)]). Let A be a triangular algebra. Then, the following conditions are equivalent.
(1) A is strongly simply connected.
(2) Every convex subcategory of A (or $A^{o p}$) satisfies the separation property.
(3) There is a presentation (Q, I) of A such that $\Pi_{1}\left(Q^{\prime}, I^{\prime}\right)$ is trivial for any connected full convex bounded subquiver $\left(Q^{\prime}, I^{\prime}\right)$ of (Q, I).

4.1.1 Tits form

Let $A \simeq K Q / I$ be a triangular algebra and $\mathbf{N}:=\{0,1,2, \ldots\}$. We recall from B2, Section 2] that the Tits form $q_{A}: \mathbb{Z}^{Q_{0}} \rightarrow \mathbb{Z}$ of A is the integral quadratic form defined by

$$
q_{A}(v)=\sum_{i \in Q_{0}} v_{i}^{2}-\sum_{(i \rightarrow j) \in Q_{1}} v_{i} v_{j}+\sum_{i, j \in Q_{0}} r(i, j) v_{i} v_{j},
$$

where $v:=\left(v_{i}\right) \in \mathbb{Z}^{Q_{0}}$ and $r(i, j)=|R \cap I(i, j)|$ with a minimal set $R \subseteq \bigcup_{i, j \in Q_{0}} I(i, j)$ of generators of the admissible ideal I. Then, the Tits form q_{A} is called weakly positive if $q_{A}(v)>0$ for any $v \neq 0$ in $\mathbf{N}^{Q_{0}}$, and weakly non-negative if $q_{A}(v) \geqslant 0$ for any $v \in \mathbf{N}^{Q_{0}}$.

It is well-known that the Tits form q_{A} has a close connection with the representation type of A. Here, we recall the related results for (strongly) simply connected algebras.

Proposition 4.1.9 ([SS2, XX, Theorem 2.9, 2.10]). Let A be a simply connected algebra.
(1) A is representation-finite if and only if the Tits form q_{A} is weakly positive, or equivalently, if and only if A does not contain a criticat convex subcategory.
(2) If A is strongly simply connected, then A is tame if and only if the Tits form q_{A} is weakly non-negative, but not weakly positive.

[^3]
4.1.2 Critical algebras

Let $\Gamma(\bmod A)$ be the Auslander-Reiten quiver of A. A connected component C of $\Gamma(\bmod A)$ is called preprojective if there is no oriented cycle in C, and any module in C is of the form $\tau^{-n}(P)$ for an $n \in \mathbb{N}$ and an indecomposable projective A-module P.

Let $A:=K \Delta$ be a hereditary algebra with a tilting A-module T (see Definition 2.0.3). Then, the endomorphism algebra $B:=\operatorname{End}_{A} T$ is called a tilted algebra of type Δ. If moreover, T is contained in a preprojective component C of $\Gamma(\bmod A)$, then we call B a concealed algebra of type Δ.

Definition 4.1.10 ([SS2, XX, Definition 2.8]). A critical algebra is one of concealed algebras of Euclidean type $\widetilde{\mathbb{D}}_{n}(n \geqslant 4), \widetilde{\mathbb{E}}_{6}, \widetilde{\mathbb{E}}_{7}$ and $\widetilde{\mathbb{E}}_{8}$.

Remark 4.1.11. The above definition is different from the original definition of critical algebras introduced by Bongartz in [B4]: an algebra A is called critical if A is representationinfinite, but any proper convex subcategory of A is representation-finite. In this thesis, the critical algebras we use are actually the original critical algebras in [B4] obtained by admissible gradings, as described in [B4, Theorem 2].

We point out that critical algebras are strongly simply connected. To show this, we first find in [AS, (1.2)] that critical algebras are simply connected. Since the quiver and relations of critical algebras are given in [B4] (and [HV]), we observe that each proper convex subcategory of a critical algebra is also simply connected and hence, critical algebras are strongly simply connected (see also [SS2, XX, Definition 2.8]).

It is also true that a critical algebra A admits a preprojective component. To show this, one may combine Proposition 4.1.7 and [ASS, IX, Theorem 4.5]. In fact, we observe that any strongly simply connected algebra admits a preprojective component.

We recall from [HV] that tame concealed algebras consist of critical algebras and the concealed algebras of Euclidean type $\widetilde{\mathbb{A}}_{n}$. Then, tame concealed algebras together with the so-called generalized Kronecker algebras, are precisely the minimal algebras of infinite representation type with a preprojective component. Here, an algebra A is called a minimal algebra of infinite representation type if A is representation-infinite, but $A / A e A$ is representation-finite for any non-zero idempotent e of A.

In the following, we recall some classes of algebras that play an essential role in the representation theory of strongly simply connected algebras. The first class of algebras is tubular algebras, which are introduced by Ringel [Rin, Chapter 5] and have only 6 , 8,9 or 10 simple modules. Tubular algebras are branch-enlargements of the canonical tubular algebras $\mathcal{C}(2,2,2,2), \mathcal{C}(3,3,3), \mathcal{C}(2,4,4)$ and $\mathcal{C}(2,3,6)$, where the canonical algebra $\mathcal{C}(2,2,2,2)$ is defined by the following quiver and relations

$$
\begin{gathered}
\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}+\alpha_{3} \beta_{3}=0, \\
\alpha_{1} \beta_{1}+\lambda \alpha_{2} \beta_{2}+\alpha_{4} \beta_{4}=0, \\
\lambda \in K /\{0,1\},
\end{gathered}
$$

and the canonical algebra $\mathcal{C}(p, q, r)$ with $p \leqslant q \leqslant r$ is defined by the quiver

bounded by $\alpha_{1} \alpha_{2} \cdots \alpha_{p}+\beta_{1} \beta_{2} \cdots \beta_{q}+\gamma_{1} \gamma_{2} \cdots \gamma_{r}=0$. We have known from [HR2, Section 1] that each tubular algebra is derived equivalent to a canonical tubular algebra (of the same type). In particular, [Sk2, Proposition 2.4] implies that every tubular algebra is tame, non-domestic, of polynomial growth.

We recall from [Rin, Section 4.1] that an A-module T is called cotilting if it satisfies $|T|=|A|, \operatorname{Ext}_{A}^{1}(T, T)=0$ and the injective dimension of T is at most one. Then, A and B are tilting-cotilting equivalent (see [Ha, Corollary 1.7]) if there exists a sequence of algebras $A=A_{0}, A_{1}, \ldots, A_{m}=B$ and a sequence of modules $T_{A_{i}}^{i}(0 \leqslant i \leqslant m)$, such that $A_{i+1}=\operatorname{End}_{A_{i}} T_{A_{i}}^{i}$ and $T_{A_{i}}^{i}$ is either a tilting or cotilting module. According to [H. Theorem 1.1], an algebra that is derived equivalent to a tubular algebra is always tilting-cotilting equivalent to one of the canonical tubular algebras. Besides, it is shown in [AS, (1.4)] that an algebra is simply connected if it is tilting-cotilting equivalent to a canonical tubular algebra. Thus, we conclude that tubular algebras are simply connected.

More generally, the algebras which are derived equivalent to tubular algebras are simply connected. However, such an algebra could be representation-finite. One may refer to [Bar, Theorem] for an explicit characterization of representation-finite algebras which are derived equivalent to tubular algebras.

The second class of algebras is the $p g$-critical algebras introduced by Nörenberg and Skowroński NS2. These algebras stand for the polynomial growth critical algebras, that is, representation-infinite tame simply connected algebras which are not of polynomial growth, but every proper convex subcategory is. Following [NS2, Theorem 3.2], one can understand all $p g$-critical algebras by quiver and relations obtained from 31 frames and 3 admissible operations. For the sake of simplicity, we omit these quivers and relations.

The third class of algebras is the hypercritical algebras introduced by Unger Un (see also Lersch Ler] and Wittman [Wi]). An algebra A is said to be hypercritical if A is a concealed algebra of minimal wild hereditary tree algebras of the following types:

where in the case of $\widetilde{\widetilde{\mathbb{D}}}_{n}$ the number of vertices is $n+2$ with $4 \leqslant n \leqslant 8$. Similarly, one can understand hypercritical algebras by quivers and relations ($[\mathrm{Un})$ and they are strongly simply connected. Actually, they are minimal wild strongly simply connected algebras as shown in Proposition 4.1.12 below.

We point out that tubular algebras and $p g$-critical algebras are not necessarily strongly simply connected while hypercritical algebras must be strongly simply connected.

Proposition 4.1.12 ([BPS, Corollary 1], [Sk2, Theorem 4.1, Corollary 4.3]). Let A be a representation-infinite strongly simply connected algebra.
(1) A is tame if and only if A does not have a hypercritical algebra as a convex subcategory.
(2) A is tame minimal superpolynomial growth if and only if A is obtained from one of the frames (1)-(16) in the list of pg-critical algebras in [NS2] by admissible operations.
(3) A is of polynomial growth if and only if A does not have a convex subcategory which is pg-critical or hypercritical.
(4) A is domestic if and only if A does not have a convex subcategory which is tubular or pg-critical or hypercritical.

4.2 Simply connected algebras

In this section, we first show that a τ-tilting finite simply connected algebra is representation-finite. Then, we prove that the τ-tilting finiteness of a non-sincere algebra can be reduced to the τ-tilting finiteness of a sincere algebra. Therefore, we can get a complete list of τ-tilting finite sincere simply connected algebras. Last, we determine the τ-tilting finiteness of several algebras which are related to the representation theory of (strongly) simply connected algebras. We need the following fundamental lemma.

Lemma 4.2.1. Any critical algebra A is τ-tilting infinite.
Proof. We have known from Definition 4.1.10 that a critical algebra A is a minimal algebra of infinite representation type with a preprojective component C_{A}. As we mentioned in the previous section, each pair $(M, \tau M)$ with a non-projective A-module M appears in the Auslander-Reiten quiver $\Gamma(\bmod A)$ as follows,

Then, by [SS1, X, Proposition 3.2], each pair of indecomposable modules M and N in C_{A} satisfies $\operatorname{rad}^{\infty}(M, N)=\operatorname{rad}^{\ell}(M, N)=0$ for $\ell \gg 0$. This implies that $\operatorname{Hom}_{A}(M, \tau M)=0$ for any $M \in C_{A}$, i.e., any indecomposable module $M \in C_{A}$ is a τ-rigid module. Since A is representation-infinite, every connected component of $\Gamma(\bmod A)$ is infinite (see ASS, IV, Theorem 5.4] for a proof). Therefore, A has infinitely many pairwise non-isomorphic indecomposable τ-rigid modules and A is τ-tilting infinite by Proposition 2.3.2,

In the above proof, the following remark is crucial. Some scholars have used this statement, such as Adachi Ad1] and Mousavand M0, to show that τ-tilting finiteness coincides with representation-finiteness for several classes of algebras.

Remark 4.2.2 ([M0, Remark 2.9]). Let A be an algebra with a preprojective component. Then, A is τ-tilting finite if and only if it is representation-finite.

Theorem 4.2.3. Let A be a simply connected algebra. Then, the following are equivalent.
(1) A is τ-tilting finite.
(2) A is representation-finite.
(3) A does not have a critical algebra as a convex subcategory.

Proof. By the definition, a convex subcategory B of A is actually a certain idempotent truncation of A. If A is τ-tilting finite, then it cannot have a critical algebra as a convex subcategory by Proposition 2.3 .5 and Lemma 4.2.1. This implies $(1) \Rightarrow$ (3). By Proposition 4.1.9, one can find $(3) \Rightarrow(2)$. Last, $(2) \Rightarrow(1)$ is obvious.

As we mentioned in the first section, we have the following immediate results.
Corollary 4.2.4. All tubular, pg-critical and hypercritical algebras are τ-tilting infinite.
Corollary 4.2.5. Let A be an algebra which is derived equivalent to a tubular algebra. Then, A is τ-tilting finite if and only if it is representation-finite.

Corollary 4.2.6. Assume that A is a simply connected algebra. If A is not strongly simply connected, it is τ-tilting infinite.

Proof. By Proposition 4.1.5, such an algebra A must be representation-infinite.
Corollary 4.2.7. Let A be a simply connected algebra and $B=A[M]$ the one-point extension with a separated radical $M=\operatorname{rad} P$ for an indecomposable projective B-module P. Then, B is τ-tilting finite if and only if it is representation-finite.

Proof. This follows from the fact that B is simply connected, see Ass2, Lemma 2.3].
Next, we consider non-sincere and sincere algebras. Let $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be a complete set of pairwise orthogonal primitive idempotents of A. Then, we have

Theorem 4.2.8. A non-sincere algebra A is τ-tilting finite if and only if $A / A e_{i} A$ is τ-tilting finite for any $1 \leqslant i \leqslant n$.

Proof. If A is τ-tilting finite, then $A / A e_{i} A$ is τ-tilting finite following Proposition 2.3.5.
We assume that any $A / A e_{i} A$ is τ-tilting finite. Since A is a non-sincere algebra, for any indecomposable A-module M, there exists at least one e_{i} such that $M e_{i}=0$ and we may denote $B_{i}:=A / A e_{i} A$. Then, for any indecomposable τ-rigid A-module M, one can always find a suitable i such that M becomes an indecomposable τ-rigid B_{i}-module. Besides, the number of indecomposable τ-rigid B_{i}-modules is finite following Proposition 2.3.2. Hence, A is also τ-tilting finite.

Corollary 4.2.9. A non-sincere algebra A is τ-tilting finite if and only if all sincere quotient $A / A e A$ is τ-tilting finite for any idempotent e of A.

Therefore, the study of τ-tilting finiteness for non-sincere algebras reduces to that of sincere algebras. We may apply this strategy to simply connected algebras. Let A be a representation-finite sincere simply connected algebra (it is actually strongly simply connected following Proposition 4.1.5). In [B5], Bongartz introduced a list of 24 infinite families containing all possible A 's with $|A| \geqslant 72$. Then, this bound is refined to $|A| \geqslant 14$ in Ringel's book [Rin, Section 6]. Hereafter, Bongartz determined the algebras with $|A| \leqslant 13$ by the graded tree introduced in [BoG]. Finally, Rogat and Tesche [RT] gave a list of all possible A 's by Gabriel quiver and relations.

Remark 4.2.10. By Theorem 4.2.3, the list in [RT] provides a complete list of τ-tilting finite sincere (strongly) simply connected algebras.

4.2.1 Some applications

We first consider the class of triangular matrix algebras. We denote by $\mathcal{T}_{2}(A)$ the algebra of 2×2 upper triangular matrices $\left(\begin{array}{cc}A & A \\ 0 & A\end{array}\right)$ over an algebra A. Then, the category $\bmod \mathcal{T}_{2}(A)$ is equivalent to the category whose objects are A-homomorphisms $f: M \rightarrow N$ between A-modules M and N, and morphisms are pairs of homomorphisms making the obvious squares commutative. This reminds us that the category $\bmod \mathcal{T}_{2}(A)$ is closely connected with the module category of the Auslander algebra of A.

Let A be a representation-finite algebra and $\left\{M_{1}, M_{2}, \ldots, M_{s}\right\}$ a complete set of representatives of the isomorphism classes of indecomposable A-modules. Then, the Auslander algebra of A is defined as $\operatorname{End}_{A}\left(\oplus_{i=1}^{s} M_{i}\right)$. We have

Proposition 4.2.11. Let A be a representation-finite simply connected algebra and $B:=$ $\operatorname{End}_{A}\left(\oplus_{i=1}^{s} M_{i}\right)$ its Auslander algebra. Then, the following conditions are equivalent.
(1) B is τ-tilting finite.
(2) B is representation-finite.
(3) $\mathcal{T}_{2}(A)$ is τ-tilting finite.
(4) $\mathcal{T}_{2}(A)$ is representation-finite.

Proof. It follows from [AB, Theorem] that the Auslander algebra of A is simply connected if and only if A is simply connected. Therefore, B is simply connected and (1) $\Leftrightarrow(2)$ follows from Theorem 4.2.3. It is known from LS1 that $\mathcal{T}_{2}(A) \simeq \mathcal{T}_{2}(K) \otimes_{K} A$. Then, $\mathcal{T}_{2}(A)$ is simply connected if and only if A is simply connected (see [LS2]). Hence, (3) $\Leftrightarrow(4)$ also follows from Theorem 4.2.3. Lastly, $(2) \Leftrightarrow(4)$ follows from [AR, Theorem 1.1] or ARS, VI, Proposition 5.8].

We point out that if A is a representation-infinite simply connected algebra, $\mathcal{T}_{2}(A)$ is τ-tilting infinite. In fact, it is easy to check that $\mathcal{T}_{2}(A)$ has A as a convex subcategory.

Next, we consider the class of iterated tilted algebras. We recall that an algebra A is called iterated tilted of type Δ (see [AH, (1.4)] and [HRS, Theorem 3]) if A is tilting-cotilting equivalent to a path algebra $K \Delta$.

Proposition 4.2.12. Let A be an iterated tilted algebra of Dynkin type or types $\widetilde{\mathbb{D}}_{n}, \widetilde{\mathbb{E}}_{p},(n \geqslant$ $4, p=6,7$ or 8$)$. Then, A is τ-tilting finite if and only if it is representation-finite.

Proof. It is shown by Ass1, Proposition 3.5] that iterated tilted algebras of Dynkin type are simply connected, and by [AS, Corollary 1.4] that an iterated tilted algebra of Euclidean type is simply connected if and only if it is of types $\widetilde{\mathbb{D}}_{n}, \widetilde{\mathbb{E}}_{p},(n \geqslant 4, p=6,7$ or 8$)$. Then, the statement follows from Theorem 4.2.3.

At the end of this section, we give another application of Theorem 4.2.3. We claim that the result below has been published in a joint work AHMW with Takuma Aihara, Takahiro Honma and Kengo Miyamoto.

We recall that an algebra $A \simeq K Q / I$ is called an incidence algebra if Q is the Hasse quiver of a finite poset and I is the ideal generated by all possible commutativity relations, that is, by all elements $w_{1}-w_{2}$ given by the pairs $\left\{w_{1}, w_{2}\right\}$ of paths in Q having the same source and target. For example, we define

Then, the bound quiver algebra $A:=K Q / I$ is an incidence algebra.
More generally, we recall a larger class of algebras which contains the class of incidence algebras as a special case. We call an algebra A locally hereditary (see [Bau]) if every nonzero homomorphism between indecomposable projective A-modules is a monomorphism. Clearly, hereditary algebras, incidence algebras and tubular algebras are locally hereditary. The class of locally hereditary algebras is rather large and plays an important role in the representation theory of algebras, we refer to [Les] for more details.

Theorem 4.2.13 ([AHMW, Theorem 4.11]). A τ-tilting finite locally hereditary algebra is representation-finite.

Proof. By the definition, a locally hereditary algebra A has no monomial relations and the quiver Q_{A} of A is triangular. We observe that if Q_{A} contains a subquiver of Euclidean type $\widetilde{\mathbb{D}}_{n}, \widetilde{\mathbb{E}}_{6}, \widetilde{\mathbb{E}}_{7}$ or $\widetilde{\mathbb{E}}_{8}$, then the corresponding idempotent truncation is a path algebra because $\widetilde{\mathbb{D}}_{n}, \widetilde{\mathbb{E}}_{6}, \widetilde{\mathbb{E}}_{7}, \widetilde{\mathbb{E}}_{8}$ are trees and only possible relations are monomial relations.

We assume that A is τ-tilting finite. Then, the quiver of A does not have a subquiver of Euclidean type $\widetilde{\mathbb{D}}_{n}, \widetilde{\mathbb{E}}_{6}, \widetilde{\mathbb{E}}_{7}$ or $\widetilde{\mathbb{E}}_{8}$, since the path algebra of such a subquiver is minimal τ-tilting infinite as we mentioned in Section 2.3. Moreover, the local hereditariness makes A to be an incidence algebra.

On the other hand, it is shown in [Dra, Theorem 3.3] that an incidence algebra is strongly simply connected if and only if it does not contain a full subcategory whose quiver is a crown, i.e., is of the form

It is obvious that a crown is just a quiver of Euclidean type $\widetilde{\mathbb{A}}_{n}$ with zigzag orientation. If a crown appears in the quiver of A, then the corresponding idempotent truncation of A would surject to the path algebra of the crown, contradicting our assumption that A is τ-tilting finite. Therefore, A is a strongly simply connected incidence algebra and the statement follows from Theorem 4.2.3.

4.3 Algebras with rectangle or triangle quiver

In this section, we first recall the constructions of staircase algebras $\mathcal{A}(\lambda)$ introduced by Boos [B0, which are parameterized by partitions λ. As we will show below, one can see that an algebra presented by a rectangle quiver with all possible commutativity relations, is actually a staircase algebra $\mathcal{A}(\lambda)$ with $\lambda=\left(m^{n}\right)$. Similarly, we introduce the shifted-staircase algebra $\mathcal{A}^{s}\left(\lambda^{s}\right)$ parameterized by a shifted partition λ^{s} as a generalization of algebras presented by triangle quivers.

4.3.1 Staircase algebras

We recall that a partition $\lambda=\left(\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{\ell}\right)$ of n is a non-increasing sequence of positive integers such that $\sum_{i \in \mathbb{N}} \lambda_{i}=n$. We may merge same entries of λ by potencies, for example, $(3,3,2,1,1)=\left(3^{2}, 2,1^{2}\right)$. We can visualize λ by the Young diagram $Y(\lambda)$, that is, a box-diagram of which the i-th row contains λ_{i} boxes. For example,

$$
Y\left(3^{2}, 2\right)=\square \square .
$$

Starting with $(1,1)$ in the top-left corner, we assign each of the boxes in $Y(\lambda)$ a coordinate (i, j) by increasing i from top to bottom and j from left to right.

Definition 4.3.1 ([Bo, Definition 3.1]). Let λ be a partition. We define Q_{λ} and I_{λ} by

- the vertices of Q_{λ} are given by the boxes appearing in $Y(\lambda)$;
- the arrows of Q_{λ} are given by all $(i, j) \rightarrow(i, j+1)$ and $(i, j) \rightarrow(i+1, j)$, whenever all these vertices are defined.
- I_{λ} is a two-sided ideal generated by all possible commutativity relations for all squares appearing in Q_{λ}.

Then, the bound quiver algebra $\mathcal{A}(\lambda):=K Q_{\lambda} / I_{\lambda}$ is called a staircase algebra.

Following the above example, let $\lambda=\left(3^{2}, 2\right)$, the associated quiver Q_{λ} is given by

and the corresponding staircase algebra $\mathcal{A}(\lambda)$ is defined by

$$
\mathcal{A}(\lambda):=K Q_{\lambda} /<\alpha_{1,1} \beta_{1,2}-\beta_{1,1} \alpha_{2,1}, \alpha_{1,2} \beta_{1,3}-\beta_{1,2} \alpha_{2,2}, \alpha_{2,1} \beta_{2,2}-\beta_{2,1} \alpha_{3,1}>.
$$

We denote by λ^{T} the transposed partition of a partition λ, which is given by the columns of the Young diagram $Y(\lambda)$ from left to right. Then, $\mathcal{A}(\lambda)$ is isomorphic to $\mathcal{A}\left(\lambda^{T}\right)$. Moreover, $\mathcal{A}(\lambda)$ is a basic, connected, triangular, finite-dimensional K-algebra.

Proposition 4.3.2 ([B0, Proposition 3.7]). Let λ be a partition. Then, the staircase algebra $\mathcal{A}(\lambda)$ is strongly simply connected.

This implies that $\mathcal{A}(\lambda)$ is τ-tilting finite if and only if it is representation-finite. Since the author of [Bo] has given a complete classification of the representation type of $\mathcal{A}(\lambda)$, we can understand all τ-tilting finite staircase algebras by quiver and relations.

Theorem 4.3.3 ([B0, Theorem 4.5]). A staircase algebra $\mathcal{A}(\lambda)$ with a partition λ of n is
(1) representation-finite ($\Leftrightarrow \tau$-tilting finite) if and only if one of the following holds:

- $\lambda \in\left\{(n),\left(n-k, 1^{k}\right),(n-2,2),\left(2^{2}, 1^{n-4}\right)\right\}$ for $k \leqslant n$.
- $n \leqslant 8$ and $\lambda \notin\left\{(4,3,1),\left(3^{2}, 2\right),\left(3,2^{2}, 1\right),\left(4,2,1^{2}\right)\right\}$.
(2) tame concealed if and only if λ comes up in the following list:

$$
(6,3),(6,2,1),\left(5,2^{2}\right),(4,3,1),\left(4,2,1^{2}\right),\left(3,2^{2}, 1\right),\left(3^{2}, 1^{3}\right),\left(2^{3}, 1^{3}\right),\left(3,2,1^{4}\right)
$$

(3) tame, but not tame concealed if and only if λ comes up in the following list:

$$
\left(5^{2}\right),(5,4),\left(4^{2}, 1\right),\left(3^{3}\right),\left(3^{2}, 2\right),\left(3,2^{3}\right),\left(2^{5}\right),\left(2^{4}, 1\right)
$$

Otherwise, $\mathcal{A}(\lambda)$ is wild.
Let \vec{A}_{n} be the path algebra of Dynkin type \mathbb{A}_{n} associated with linear orientation. Then, we define

$$
\mathcal{B}:=\left\{B_{m, n} \mid B_{m, n} \text { is the tensor product } \vec{A}_{m} \otimes_{K} \vec{A}_{n}\right\} .
$$

Note that $B_{m, n}$ is presented by a rectangle quiver with all possible commutativity relations and vice versa. In particular, $B_{m, n} \simeq B_{n, m}$. We also note that $B_{m, n}$ can be regarded as a special staircase algebra. Hence, we can determine the τ-tilting finiteness of $B_{m, n}$.

Corollary 4.3.4. Let $B_{m, n} \in \mathcal{B}$. Then, the algebra $B_{m, n}$ is τ-tilting finite if and only if (m, n) or $(n, m) \in\{(1, k),(2,2),(2,3),(2,4) \mid k \in \mathbb{N}\}$.

Proof. It is obvious that $B_{m, n}$ is a staircase algebra $\mathcal{A}(\lambda)$ with $\lambda=\left(m^{n}\right)$ or $\left(n^{m}\right)$. Then, the statement follows from Theorem 4.3.3.

4.3.2 Shifted-staircase algebras

Now, we consider the triangle quivers. We point out that the quiver of staircase algebras cannot be a triangle quiver because of the different orientations. One may look at the following case as an example.

A triangle quiver $Q_{t r i}$

$\mathcal{A}(\lambda)$ with $\lambda=(4,3,2,1)$

This motivates us to introduce the shifted-staircase algebras. We recall that a shifted partition $\lambda^{s}=\left(\lambda_{1}^{s}>\lambda_{2}^{s}>\cdots>\lambda_{\ell}^{s}\right)$ is a strictly decreasing sequence of positive integers. We can visualize λ^{s} by the shifted Young diagram $Y\left(\lambda^{s}\right)$, that is, a box-diagram of which the i-th row contains λ_{i} boxes and is shifted to the right $i-1$ steps. For example, let $\lambda^{s}=(4,3,2,1)$, then

$$
Y\left(\lambda^{s}\right)=\square \square \square .
$$

Starting with $(1,1)$ in the top-left corner, we assign each of the boxes in $Y\left(\lambda^{s}\right)$ a coordinate (i, j) with $j \geqslant i$ by increasing i from top to bottom and j from left to right.

Definition 4.3.5. Let λ^{s} be a shifted partition and $\mathcal{A}^{s}\left(\lambda^{s}\right):=K Q_{\lambda^{s}} / I_{\lambda^{s}}$ such that

- the vertices of $Q_{\lambda^{s}}$ are given by the boxes appearing in $Y\left(\lambda^{s}\right)$;
- the arrows of $Q_{\lambda^{s}}$ are given by all $(i, j) \rightarrow(i, j+1)$ and $(i, j) \rightarrow(i+1, j)$, whenever all these vertices are defined.
- $I_{\lambda^{s}}$ is a two-sided ideal generated by all possible commutativity relations for all squares appearing in $Q_{\lambda^{s}}$.

Then, the bound quiver algebra $\mathcal{A}^{s}\left(\lambda^{s}\right)$ is called a shifted-staircase algebra.
For example, the quiver $Q_{\lambda^{s}}$ with $\lambda^{s}=(4,3,2,1)$ is exactly the triangle quiver $Q_{t r i}$ displayed above. In fact, the algebra presented by a triangle quiver with $\frac{n(n+1)}{2}$ vertices (and all possible commutativity relations), is exactly the shifted-staircase algebra $\mathcal{A}^{s}\left(\lambda^{s}\right)$ with $\lambda^{s}=(n, n-1, \ldots, 2,1)$.

It is obvious that $\mathcal{A}^{s}\left(\lambda^{s}\right)$ is also a basic, connected, triangular, finite-dimensional K-algebra. Next, we show that $\mathcal{A}^{s}\left(\lambda^{s}\right)$ is strongly simply connected.

Proposition 4.3.6. For a shifted partition $\lambda^{s}, \mathcal{A}^{s}\left(\lambda^{s}\right)$ is strongly simply connected.

Proof. Let B be a convex subcategory of $\mathcal{A}^{s}\left(\lambda^{s}\right)$ and $P_{(i, j)}$ the indecomposable projective B-module at vertex (i, j). Then, one can check that $\operatorname{rad} P_{(i, j)}$ is either indecomposable or decomposed into exactly two indecomposable B-modules. The latter case appears if and only if $(i, j+1)$ and $(i+1, j)$ are vertices of the quiver Q_{B} of B, but $(i+1, j+1)$ is not.

For the former case, there is nothing to prove. For the latter case, let $Q(i, j)$ be the subquiver of Q_{B} obtained by deleting all vertices of Q_{B} being a source of a path in Q_{B} with target (i, j). Then, $Q(i, j)$ is decomposed into two disjoint subquivers such that rad $P_{(i, j)}$ is separated. Hence, B satisfies the separation condition and it is simply connected following Proposition 4.1.7. Then, the statement follows from the definition of strongly simply connected algebras, see Definition 4.1.4.

Now, we have understood that $\mathcal{A}^{s}\left(\lambda^{s}\right)$ is τ-tilting finite if and only if it is representationfinite. In order to classify τ-tilting finite shifted-staircase algebras by quiver and relations, it is enough to give a complete classification for the representation type of shifted-staircase algebras. Before to do this, we need the following observation.

Let $\lambda^{s}=\left(\lambda_{1}^{s}>\lambda_{2}^{s}>\cdots>\lambda_{\ell}^{s}\right)$ and $\mu^{s}=\left(\mu_{1}^{s}>\mu_{2}^{s}>\cdots>\mu_{k}^{s}\right)$ be two shifted partitions. We say that $\lambda^{s} \leq \mu^{s}$ if $\ell \leqslant k$ and $\lambda_{i}^{s} \leqslant \mu_{i}^{s}$ for all $1 \leqslant i \leqslant \ell$.

Proposition 4.3.7. Suppose $\lambda^{s} \leq \mu^{s}$. Then, $\mathcal{A}^{s}\left(\lambda^{s}\right)$ is a convex subcategory of $\mathcal{A}^{s}\left(\mu^{s}\right)$.
We may use an example to understand the above proposition. Let $\lambda^{s}=(4,3,1)$ and $\mu^{s}=(4,3,2,1)$. Then, $\mathcal{A}^{s}\left(\lambda^{s}\right)$ is presented by

with all possible commutativity relations, while $\mathcal{A}^{s}\left(\mu^{s}\right)$ is presented by the triangle quiver $Q_{\text {tri }}$ with all possible commutativity relations. One can easily find that $\mathcal{A}^{s}\left(\lambda^{s}\right)$ is a proper convex subcategory of $\mathcal{A}^{s}\left(\mu^{s}\right)$.

Theorem 4.3.8. For a shifted partition λ^{s}, the shifted-staircase algebra $\mathcal{A}^{s}\left(\lambda^{s}\right)$ is

- representation-finite if and only if λ^{s} is one of $(n),(m-1,1)$ with $m \geqslant 3,(3,2)$, $(4,2),(5,2),(6,2),(4,3),(5,3),(5,4),(3,2,1)$ and $(4,2,1)$.
- tame concealed if and only if λ^{s} is one of $(6,3),(7,2)$ and $(5,2,1)$.
- tame non-concealed if and only if λ^{s} is one of $(6,4),(6,5),(4,3,1),(4,3,2)$ and $(4,3,2,1)$.

Otherwise, $\mathcal{A}^{s}\left(\lambda^{s}\right)$ is wild.
Proof. We first observe that $\mathcal{A}^{s}(n)$ and $\mathcal{A}^{s}(m-1,1)$ with $m \geqslant 3$ are path algebras of Dynkin types \mathbb{A}_{n} and \mathbb{D}_{m}, respectively. Thus, both of them are representation-finite.

Next, we directly construct the Tits form of $\mathcal{A}^{s}\left(\lambda^{s}\right)$ for some small cases. Then, we can use Proposition 4.1.9 to check their representation type since $\mathcal{A}^{s}\left(\lambda^{s}\right)$ is strongly simply connected. In particular, we use the software GAP to check whether a Tits form is weakly non-negative (resp., weakly positive) or not, where the method in GAP is introduced by [DP] (resp., H0]). Although we can also check that $\mathcal{A}^{s}\left(\lambda^{s}\right)$ is critical or not by checking the Tits form of all convex subcategories of $\mathcal{A}^{s}\left(\lambda^{s}\right)$, we would like to trust the list of critical algebras in [B4] since the list is also given independently in [HV].
(1) Assume that $Q_{(8,2)}$ is labeled as

By the definition of Tits form, we have

$$
\begin{aligned}
q_{\mathcal{A}^{s}(8,2)}(v)= & v_{1}^{2}-v_{1} v_{2}+v_{2}^{2}-v_{2} v_{3}-v_{2} v_{9}+v_{2} v_{10}+v_{3}^{2} \\
& -v_{3} v_{4}-v_{3} v_{10}+v_{4}^{2}-v_{4} v_{5}+v_{5}^{2}-v_{5} v_{6}+v_{6}^{2} \\
& -v_{6} v_{7}+v_{7}^{2}-v_{7} v_{8}+v_{8}^{2}+v_{9}^{2}-v_{9} v_{10}+v_{10}^{2} .
\end{aligned}
$$

Then, one can check that

$$
q_{\mathcal{A}^{s}(8,2)}\left(\begin{array}{rrrrrrrr}
10 & 20 & 25 & 20 & 16 & 12 & 5 & 1 \\
& 15 & 10 & & & & &
\end{array}\right)=-1 .
$$

We deduce that $\mathcal{A}^{s}(8,2)$ is wild following Proposition 4.1.9. Then, we observe that $\mathcal{A}^{s}(7,2)$ is the critical algebra numbered 18 in [B4] and hence, $\mathcal{A}^{s}(6,2), \mathcal{A}^{s}(5,2), \mathcal{A}^{s}(4,2)$ and $\mathcal{A}^{s}(3,2)$ are representation-finite. Similarly, one can check that $\mathcal{A}^{s}(7,3)$ is wild by

$$
q_{\mathcal{A}^{s}(7,3)}\left(\begin{array}{ccccccc}
2 & 4 & 6 & 6 & 4 & 2 & 1 \\
& 4 & 4 & 2 & & &
\end{array}\right)=-1
$$

and $\mathcal{A}^{s}(6,3)$ is the critical algebra numbered 93 in [B4]. Then, $\mathcal{A}^{s}(5,3)$ and $\mathcal{A}^{s}(4,3)$ are representation-finite.
(2) Assume that $Q_{(6,5)}$ is labeled as

Then, the Tits form $q_{\mathcal{A}^{s}(6,5)}(v)=v X v^{T}$ is given by

$$
X=\frac{1}{2} .\left(\begin{array}{ccccccccccc}
2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & -1 & 2 & 0 & 0 & 0 & 0 & -1 \\
0 & -1 & 0 & 0 & 0 & 0 & 2 & -1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & -1 & 2
\end{array}\right) .
$$

It can be checked by GAP that $q_{\mathcal{A}^{s}(6,5)}(v)$ is weakly non-negative, so that $\mathcal{A}^{s}(6,5)$ is not wild by Proposition 4.1.9. On the other hand, $\mathcal{A}^{s}(6,5)$ is representation-infinite since it has the following critical algebra as a proper convex subcategory,

which is numbered 86 in [B4]. Thus, $\mathcal{A}^{s}(6,5)$ is tame non-concealed. We find that $\mathcal{A}^{s}(6,4)$ is also tame non-concealed since such a proper critical convex subcategory in $\mathcal{A}^{s}(6,5)$ remains in $\mathcal{A}^{s}(6,4)$. Then, we find that $\mathcal{A}^{s}(5,4)$ is representation-finite since the Tits form $q_{\mathcal{A}^{s}(5,4)}(v)$ is weakly positive.
(3) We point out that $\mathcal{A}^{s}(6,2,1)$ is wild by

$$
q_{\mathcal{A}^{s}(6,2,1)}\left(\begin{array}{cccccc}
2 & 4 & 6 & 4 & 2 & 1 \\
& 4 & 4 & & & \\
& & 2 & & &
\end{array}\right)=-1
$$

and $\mathcal{A}^{s}(5,2,1)$ is the critical algebra numbered 14 in [B4]. Therefore, $\mathcal{A}^{s}(4,2,1)$ and $\mathcal{A}^{s}(3,2,1)$ are representation-finite. Similarly, $\mathcal{A}^{s}(5,3,1)$ is wild by

$$
q_{\mathcal{A}^{s}(5,3,1)}\left(\begin{array}{ccccc}
1 & 1 & 3 & 4 & 2 \\
& 2 & 4 & 3 & \\
& & 2 & &
\end{array}\right)=-1
$$

Since $\mathcal{A}^{s}(4,3,2,1), \mathcal{A}^{s}(4,3,2)$ and $\mathcal{A}^{s}(4,3,1)$ contain the following critical algebra (see [B4, Lemma 3.1]) as a proper convex subcategory,

they are representation-infinite and not tame concealed. Similar to the case $\mathcal{A}^{s}(6,5)$, the Tits form $q_{\mathcal{A}^{s}(4,3,2,1)}(v)$ is weakly non-negative such that $\mathcal{A}^{s}(4,3,2,1), \mathcal{A}^{s}(4,3,2)$ and $\mathcal{A}^{s}(4,3,1)$ are not wild.

Lastly, we observe that if λ^{s} does not contain one of $(8,2),(7,3),(6,5),(6,2,1)$ and $(5,3,1)$, then λ^{s} is listed in Theorem 4.3.8. Thus, all of the remaining cases are wild.

Remark 4.3.9. In fact, $\mathcal{A}^{s}(8,2)$ is a minimal wild ${ }^{3}$ algebra which is the 3rd algebra in the first line on page 151 of $\left\lfloor\mathbb{U n} ; \mathcal{A}^{s}(7,3)\right.$ is the 4 th minimal wild concealed algebra in the second line on page 152 of $\left[\mathrm{Un} ; \mathcal{A}^{s}(6,2,1)\right.$ is the 1 st minimal wild concealed algebra in the second line on page 150 of [Un] $\mathcal{A}^{s}(5,4)$ is a representation-finite sincere simply connected algebra, which is numbered 920 of type $(5,2,1)$ in RT].

Corollary 4.3.10. A shifted-staircase algebra $\mathcal{A}^{s}\left(\lambda^{s}\right)$ is τ-tilting finite if and only if the shifted partition λ^{s} is one of $(n),(m-1,1)$ with $m \geqslant 3,(3,2),(4,2),(5,2),(6,2),(4,3)$, $(5,3),(5,4),(3,2,1)$ and $(4,2,1)$.

[^4]We define

$$
\mathcal{C}:=\left\{C_{n} \left\lvert\, \begin{array}{c}
C_{n} \text { is the algebra presented by a triangle quiver with } \\
\frac{n(n+1)}{2} \text { vertices and all possible commutativity relations }
\end{array}\right.\right\} .
$$

Corollary 4.3.11. Let $C_{n} \in \mathcal{C}$. Then, C_{n} is τ-tilting finite if and only if $n \leqslant 3$.
Proof. It is obvious that C_{n} is the algebra $\mathcal{A}^{s}\left(\lambda^{s}\right)$ with $\lambda^{s}:=(n, n-1, \ldots, 2,1)$.
At the end of this section, we may distinguish the following special cases. Let \vec{A}_{n} be the path algebra of Dynkin type \mathbb{A}_{n} associated with linear orientation. We define

$$
\mathcal{D}:=\left\{D_{n} \mid D_{n} \text { is the tensor product } \vec{A}_{2 n+1} \otimes_{K} \vec{A}_{n}\right\}
$$

and

$$
\mathcal{E}:=\left\{E_{n} \mid E_{n} \text { is the Auslander algebra of } \vec{A}_{2 n}\right\} .
$$

Then, D_{n} is the staircase algebra $\mathcal{A}(\lambda)$ with $\lambda=\left(n^{2 n+1}\right)$ and E_{n} is a quotient algebra of the shifted-staircase algebra $\mathcal{A}^{s}\left(\lambda^{s}\right)$ with $\lambda^{s}=(2 n, 2 n-1, \ldots, 1)$, modulo some monomial relations. It is shown in [La, Corollary 1.13] that $D_{n} \in \mathcal{D}$ is derived equivalent to $E_{n} \in \mathcal{E}$.

Remark 4.3.12. Prof. Ariki pointed out that the derived equivalence between D_{2} and E_{2} gives an example that derived equivalence does not necessarily preserve the τ tilting finiteness. Indeed, Proposition 4.2 .11 implies that E_{2} is τ-tilting finite because $T_{2}\left(\vec{A}_{4}\right)=\vec{A}_{2} \otimes \vec{A}_{4}$ is τ-tilting finite by Corollary 4.3.4, while D_{2} is τ-tilting infinite by Corollary 4.3.4.

Chapter 5

Schur Algebras

In this chapter, we focus on Schur algebras which play an important role in the theory of Schur-Weyl duality. In other words, this class of algebras links representations of the symmetric group G_{r} with representations of the general linear group $\mathrm{GL}_{n}(\mathbb{F})$ over a field \mathbb{F}. Since the class of Schur algebras was introduced, it has always received widespread attention and achieved significant influences in representation theory and Lie theory until now. For example, many derivatives appeared, such as q-Schur algebras, infinitesimal Schur algebras, Borel-Schur algebras and so on. In particular, the representation type of Schur algebras is completely determined by various authors, including Erdmann [Er, Xi [Xi], Doty-Nakano [DN] and Doty-Erdmann-Martin-Nakano DEMN].

Let n, r be two positive integers and \mathbb{F} an algebraically closed field of characteristic p. We take an n-dimensional vector space V over \mathbb{F} with a basis $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. We denote by $V^{\otimes r}$ the r-fold tensor product $V \otimes_{\mathbb{F}} V \otimes_{\mathbb{F}} \cdots \otimes_{\mathbb{F}} V$. Then, $V^{\otimes r}$ has a \mathbb{F}-basis given by

$$
\left\{v_{i_{1}} \otimes v_{i_{2}} \otimes \cdots \otimes v_{i_{r}} \mid 1 \leqslant i_{j} \leqslant n \text { for all } 1 \leqslant j \leqslant r\right\}
$$

Let G_{r} be the symmetric group on r symbols and $\mathbb{F} G_{r}$ its group algebra. Then, G_{r}, and hence also $\mathbb{F} G_{r}$, act on the right on $V^{\otimes r}$ by place permutations of the subscripts, that is, for any $\sigma \in G_{r}$,

$$
\left(v_{i_{1}} \otimes v_{i_{2}} \otimes \cdots \otimes v_{i_{r}}\right) \cdot \sigma=v_{i_{\sigma(1)}} \otimes v_{i_{\sigma(2)}} \otimes \cdots \otimes v_{i_{\sigma(r)}}
$$

We call the endomorphism ring $\operatorname{End}_{\mathbb{F} G_{r}}\left(V^{\otimes r}\right)$ the Schur algebra (see [Ma, Section 2]) and denote it by $S_{\mathbb{F}}(n, r)$, or simply by $S(n, r)$.

In the first section, we recall some basic materials for the symmetric group G_{r} and the Schur algebra $S(n, r)$. Moreover, we give two reduction theorems such that we only need to consider small n and r, and we explain our strategy to prove $S(n, r)$ to be τ-tilting infinite. In the second section, we determine the number $\# \mathrm{~s} \tau$-tilt A for a representation-finite block A, or a tame block A of a tame Schur algebra $S(n, r)$. As a consequence, we deduce that all tame Schur algebras are τ-tilting finite. In the last section, we determine the τ-tilting finiteness of wild Schur algebras.

5.1 Symmetric groups and Schur algebras

In this section, we review some of the backgrounds that will be needed in this chapter. Basically, we refer to some textbooks, such as [Ja, Ma and [Sa], for more details on the representation theory of the symmetric group and the Schur algebra.

Let r be a natural number and $\lambda:=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ a sequence of non-negative integers. We call λ a partition of r if $\sum_{i \in \mathbb{N}} \lambda_{i}=r$ with $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant 0$, and the elements λ_{i} are called parts of λ. If there exists an $n \in \mathbb{N}$ such that $\lambda_{i}=0$ for all $i>n$, then we denote λ by $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ and call it a partition of r with at most n parts. We denote by $\Omega(r)$ the set of all partitions of r and by $\Omega(n, r)$ the set of all partitions of r with at most n parts. For example, $\Omega(5)=\left\{(5),(4,1),(3,2),\left(3,1^{2}\right),\left(2^{2}, 1\right),\left(2,1^{3}\right),\left(1^{5}\right)\right\}$ and $\Omega(3,5)=\left\{(5),(4,1),(3,2),\left(3,1^{2}\right),\left(2^{2}, 1\right)\right\}$.

Definition 5.1.1. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$ and $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$ be partitions of r. We say that λ dominates μ if

$$
\lambda_{1}+\lambda_{2}+\cdots+\lambda_{i} \geqslant \mu_{1}+\mu_{2}+\cdots+\mu_{i}
$$

for any $i \geqslant 1$, and we denote by $\lambda \unrhd \mu$. We say that $\lambda>\mu$ in lexicographic order if there exists an index i satisfying $\lambda_{i}>\mu_{i}$ while $\lambda_{j}=\mu_{j}$ for any $j<i$.

As mentioned in the previous chapter, we may regard a partition λ of r as a box-diagram $[\lambda]$ of which the i-th row contains λ_{i}-boxes. For example,
$[(5,3,2,1)]=$

For a prime p, a partition λ or a diagram $[\lambda]$ is called p-regular if no p rows of λ have the same length. Otherwise, λ or $[\lambda]$ is called p-singular.

We can associate each box x of $[\lambda]$ with a hook H_{x}, which is the set of boxes below x, boxes on the right of x and x itself. Then, the hook length $\left|H_{x}\right|$ is defined as the number of boxes in H_{x}. In the above example, the hook lengths are

On the other hand, a hook H_{x} is called a p-hook if $\left|H_{x}\right|=p$. Then, we may get the p-core of $[\lambda]$ (or λ) by removing as many p-hooks as we can. For example, the 3 -core of $\lambda=(5,3,2,1)$ is $\square \square$, which is obtained by the following process

$$
\left.\begin{array}{|l|l|l|l|l}
\hline 8 & 6 & 4 & 2 & 1 \\
\hline 5 & 3 & 1 & \\
\hline 3 & 1 & &
\end{array} \longrightarrow \begin{array}{|l|l|l|l|l}
\hline 6 & 5 & 4 & 2 & 1 \\
\hline 1 & & &
\end{array} \longrightarrow \begin{array}{|l|l|l|l|l|}
\hline 5 & 2 & 1 & & 4 \\
\hline
\end{array}\right]
$$

It can be shown that the p-core of a partition λ is independent of the order in which p-hooks are removed.

5.1.1 Permutation modules

Let λ be a partition of r. A λ-tableau t is obtained from $[\lambda]$ by filling the boxes by numbers $\{1,2, \ldots, r\}$ without repetition. In fact, t is a bijection between the boxes in $[\lambda]$ and the numbers in $\{1,2, \ldots, r\}$. For any $\sigma \in G_{r}$, we define an action $t \cdot \sigma:=t \circ \sigma$ by the composition of the bijection t and the permutation σ. Then, the column stabilizer of a λ-tableau t is defined as the subgroup C_{t} of G_{r} consisting of permutations preserving the numbers in each column of t. Similarly, the row stabilizer of t is the subgroup R_{t} consisting of permutations preserving the numbers in each row of t.

Let t, t^{\prime} be two λ-tableaux. We may define a row-equivalence relation $t \sim t^{\prime}$ if $t^{\prime}=t \cdot \sigma$ for a $\sigma \in R_{t}$. The equivalence class of t under \sim is called a λ-tabloid and is denoted by $\{t\}$. We also define a G_{r}-action on a λ-tabloid $\{t\}$ by $\{t\} \cdot \sigma:=\{t \cdot \sigma\}$ for any $\sigma \in G_{r}$ and this action is well-defined. Then, the λ-polytabloid e_{t} associated with a λ-tableau t is defined by $e_{t}:=\{t\} \cdot \kappa_{t}$, where $\kappa_{t}:=\sum_{\sigma \in C_{t}} \operatorname{sgn}(\sigma) \sigma$ is the signed column sum.

To illustrate our construction above, we give the following example.
Example 5.1.2. Let $\lambda=(2,1)$. Then, a complete list of λ-tableaux is

For $t=$| 1 | 2 |
| :--- | :--- |
| 3 | , we have $C_{t}=\{i d,(13)\}$ and $R_{t}=\{i d,(12)\}$. Then, the λ-tabloid $\{t\}$ is ${ }^{2}$. 10 |

and the λ-polytabloid e_{t} is

$$
e_{t}=\{t\}-\{t\} \cdot(13)=\overline{\frac{12}{3}}-\frac{\overline{23}}{\underline{1}} .
$$

Let λ be a partition of r. We denote by M^{λ} the \mathbb{F}-vector space spanned by all λ tabloids. Then, the G_{r}-action on λ-tabloids makes M^{λ} into a module over the group algebra $\mathbb{F} G_{r}$, which is cyclic and generated by any one λ-tabloid. We call M^{λ} the permutation module corresponding to λ. Moreover, it is clear from the definition that M^{λ} is the induced $\mathbb{F} G_{r}$-module $1_{G_{\lambda}} \uparrow^{G_{r}}$ for a Young subgroup G_{λ} of G_{r}, where $G_{\lambda}:=$ $G_{\left\{1,2, \ldots, \lambda_{1}\right\}} \times G_{\left\{\lambda_{1}+1, \lambda_{1}+2, \ldots, \lambda_{1}+\lambda_{2}\right\}} \times \cdots \times G_{\left\{\lambda_{1}+\cdots+\lambda_{n-1}+1, \lambda_{1}+\cdots+\lambda_{n-1}+2, \ldots, r\right\}}, 1_{G_{\lambda}}$ denotes the trivial module for G_{λ} and \uparrow denotes induction.

We define a bilinear form \langle,$\rangle on the set of all \lambda$-tabloids as follows,

$$
\left\langle\left\{t_{1}\right\},\left\{t_{2}\right\}\right\rangle:= \begin{cases}1 & \text { if }\left\{t_{1}\right\}=\left\{t_{2}\right\} \\ 0 & \text { otherwise }\end{cases}
$$

Then, it can be shown that \langle,$\rangle is a symmetric G_{r}$-invariant bilinear form on M^{λ}. For any $\mathbb{F} G_{r}$-submodule N of M^{λ}, we define $N^{\perp}:=\left\{x \in M^{\lambda} \mid\langle x, y\rangle=0\right.$ for all $\left.y \in N\right\}$. It is obvious that N^{\perp} is again a $\mathbb{F} G_{r}$-submodule of M^{λ}.

Let $S(n, r)=\operatorname{End}_{\mathbb{F} G_{r}}\left(V^{\otimes r}\right)$ be the Schur algebra. We would like to find the basic algebra of $S(n, r)$ so that we have to find all indecomposable pairwise non-isomorphic direct summands of $V^{\otimes r}$. As the first step, we recall (e.g., see [Ve, Section 1.6]) that M^{λ} can be regarded as (not necessarily indecomposable) direct summands of $V^{\otimes r}$. Therefore, we have the following algebra isomorphism,

$$
S(n, r) \simeq \operatorname{End}_{\mathbb{F} G_{r}}\left(\underset{\lambda \in \Omega(n, r)}{\bigoplus_{\lambda}} n_{\lambda} M^{\lambda}\right)
$$

where $1 \leqslant n_{\lambda} \in \mathbb{N}$ is the number of compositions of r with at most n parts which are rearrangement of λ.

5.1.2 Specht modules and Young modules

In order to find all indecomposable pairwise non-isomorphic direct summands of M^{λ}, we need Specht modules. Following the conventions in Ja, we call the submodule S^{λ} of M^{λ} spanned by all λ-polytabloids the Specht module corresponding to λ.

Theorem 5.1.3 ([Ja, Theorem 4.12, Theorem 11.5]). Let $\mathbb{F} G_{r}$ be the group algebra of the symmetric group G_{r}. If \mathbb{F} is a field of characteristic zero, then $\left\{S^{\lambda} \mid \lambda \in \Omega(r)\right\}$ is a complete set of pairwise non-isomorphic simple $\mathbb{F} G_{r}$-modules. If \mathbb{F} is a field of prime characteristic p, then each Specht module S^{λ} with λ being p-regular has a unique (up to isomorphism) simple top $D^{\lambda}:=S^{\lambda} /\left(S^{\lambda} \cap\left(S^{\lambda}\right)^{\perp}\right)$ and $\left\{D^{\lambda} \mid \lambda \in \Omega(r), \lambda\right.$ is p-regular $\}$ is a complete set of pairwise non-isomorphic simple $\mathbb{F} G_{r}$-modules.

In the case of a p-singular partition μ, all of the composition factors of S^{μ} are D^{λ} such that λ is a p-regular partition with $\lambda \triangleright \mu$.

Let \mathbb{F} be a field of prime characteristic p. The decomposition number $\left[S^{\lambda}: D^{\mu}\right]$ provides how many times each simple module D^{μ} occurs as a composition factor of the Specht module S^{λ}. If we run all partitions of r, then we get the decomposition matrix of $\mathbb{F} G_{r}$. Usually, we place the p-regular partitions in the decreasing order with respect to the lexicographic order and above all p-singular partitions. Then, the decomposition matrix of $\mathbb{F} G_{r}$ has the following form, see [Ja, Corollary 12.3].

We recall that a permutation module M^{λ} over \mathbb{F} is liftable by a p-modular system and therefore, it has an associated ordinary character ch M^{λ}. Let χ^{λ} be the ordinary character corresponding to $\lambda\left(\stackrel{1: 1}{\longleftrightarrow}\right.$ Specht module $\left.S^{\lambda}\right)$ over a field of characteristic zero. Then,

$$
\text { ch } M^{\lambda}=\chi^{\lambda}+\sum_{\mu \triangleright \lambda} k_{\mu} \chi^{\mu}
$$

with multiplicities k_{μ} which can be zero. We decompose M^{λ} into a sum of indecomposable direct summands $\oplus_{i=1}^{n} Y_{i}$ for $n \in \mathbb{N}$. Obviously, each summand Y_{i} is also liftable and has an associated ordinary character ch Y_{i}.

Definition 5.1.4. The unique direct summand Y_{i} which the ordinary character χ^{λ} occurs in ch Y_{i}, is called the Young module corresponding to λ and is denoted by Y^{λ}.

It is well-known that the Young module Y^{λ} has a Specht filtration which is given by $Y^{\lambda}=Z_{1} \supseteq Z_{2} \supseteq \cdots \supseteq Z_{k}=0$ for some $k \in \mathbb{N}$ with each Z_{i} / Z_{i+1} isomorphic to a Specht module S^{μ} with $\mu \unrhd \lambda$. Moreover, the Young module Y^{λ} is self-dual, that is, $Y^{\lambda} \simeq D\left(Y^{\lambda}\right)$ with respect to $D=\operatorname{Hom}_{\mathbb{F}}(-, \mathbb{F})$. In fact, $D\left(Y^{\lambda}\right)$ becomes a right $\mathbb{F} G_{r}$-module via $(f \cdot \sigma)(x):=f\left(x \sigma^{-1}\right)$ for $f \in D\left(Y^{\lambda}\right), \sigma \in G_{r}$ and $x \in Y^{\lambda}$.

Theorem 5.1.5 ([Ma, Section 4.6]). The set $\left\{Y^{\lambda} \mid \lambda \in \Omega(n, r)\right\}$ is a complete set of indecomposable pairwise non-isomorphic direct summands of $\left\{M^{\lambda} \mid \lambda \in \Omega(n, r)\right\}$.

Now, we are able to explain how to construct the basic algebra of the Schur algebra $S(n, r)$. Let B be a block of the group algebra $\mathbb{F} G_{r}$ labeled by a p-core ω. It is well-known that a partition λ belongs to B if and only if λ has the same p-core ω. Then, we define

$$
S_{B}:=\operatorname{End}_{\mathbb{F} G_{r}}\left(\underset{\lambda \in B \cap \Omega(n, r)}{ } Y^{\lambda}\right)
$$

and the basic algebra of $S(n, r)$ is given by $\bigoplus S_{B}$, where the sum is taken over all blocks of $\mathbb{F} G_{r}$. Moreover, S_{B} is a direct sum of blocks of the basic algebra of $S(n, r)$. We remark that if we consider the Young modules Y^{λ} for partitions λ of r with at most n parts, the Specht modules S^{μ} in the Specht filtration of Y^{λ} and the composition factors D^{μ} which appear in Y^{λ} are also corresponding to the partitions with at most n parts. (The reason is that $\left[S^{\lambda}: D^{\mu}\right] \neq 0 \Rightarrow \mu \unrhd \lambda$.)

In order to understand the explicit structure of Y^{λ}, we need to know the decomposition matrix $\left[S^{\lambda}: D^{\mu}\right]$ and the filtration multiplicities $\left[Y^{\lambda}: S^{\mu}\right]$. Note that the latter one $\left[Y^{\lambda}: S^{\mu}\right]$ is equivalent to the ordinary character ch Y^{λ} of Y^{λ}. Then, it is worth mentioning that Henke [He provided a formula to calculate ch Y^{λ} when λ is a partition with at most two parts. We recall these constructions as follows. Let p be a prime. There is a p-adic decomposition $s=\sum_{s \geqslant 0} s_{k} p^{k}$ for any non-negative integer s. Now, let s, t be two non-negative integers, we define a function

$$
f(s, t)=\prod_{k \in\{0\} \cup \mathbb{N}}\binom{p-1-s_{k}}{p-1-t_{k}},
$$

where we set $\binom{m}{n}=0$ if $m<n$. Moreover, we have

$$
g(s, t):=\left\{\begin{array}{l}
1 \text { if } f(2 t, s+t)=1, \\
0 \text { otherwise }
\end{array} \text { and } h(s, t):=\left\{\begin{array}{l}
1 \text { if } f(2 t+1, s+t+1)=1 \\
0 \text { otherwise }
\end{array}\right.\right.
$$

Lemma 5.1.6 ([He, Section 5.2]). Let $(r-k, k)$ be a partition with a non-negative integer k and ch $Y^{(r-k, k)}$ the associated ordinary character of $Y^{(r-k, k)}$.
(1) If r is even, then

$$
\text { ch } Y^{(r-k, k)}=\sum_{i=0}^{\frac{r}{2}} g\left(\frac{r}{2}-i, \frac{r}{2}-k\right) \chi^{(r-i, i)} \text {. }
$$

(2) If r is odd, then

$$
\text { ch } Y^{(r-k, k)}=\sum_{i=0}^{\left[\frac{r}{2}\right]} h\left(\left[\frac{r}{2}\right]-i,\left[\frac{r}{2}\right]-k\right) \chi^{(r-i, i)}
$$

where $\left[\frac{r}{2}\right]$ is the greatest integer less than or equal to $\frac{r}{2}$.
We may give an example to illustrate our constructions above.
Example 5.1.7. We look at the Schur algebra $S(2,11)$ over $p=2$. Let B_{1} be the principal block of $\mathbb{F} G_{11}$ and B_{2} the block of $\mathbb{F} G_{11}$ labeled by 2 -core $(2,1)$. Then, we may find in [Ja] that the parts of the decomposition matrix $\left[S^{\lambda}: D^{\mu}\right]$ for the partitions in B_{1} and B_{2} with at most two parts are

$$
B_{1}: \underset{(7,4)}{(11)}\left(\begin{array}{lll}
1 & & \\
0 & 1 & \\
1 & 0 & 1
\end{array}\right), \stackrel{(10,1)}{(8,5)}\left(\begin{array}{lll}
1 & & \\
1 & 1 & \\
0 & 1 & 1
\end{array}\right)
$$

We determine $S_{B_{2}}$ as follows. By using the formula given in Lemma 5.1.6, we have

$$
\begin{aligned}
\text { ch } Y^{(10,1)} & =\chi^{(10,1)} \\
\text { ch } Y^{(8,3)} & =\chi^{(10,1)}+\chi^{(8,3)} \\
\text { ch } Y^{(6,5)} & =\chi^{(10,1)}+\chi^{(8,3)}+\chi^{(6,5)} .
\end{aligned}
$$

Similar to the proof of [Er, Lemma 4.4], we may read off the Specht filtration of Y^{λ} from the formula, and the composition factors of Young modules are $\left\{D^{(10,1)}, D^{(8,3)}, D^{(6,5)}\right\}$. It is obvious that $Y^{(10,1)}=S^{(10,1)}=D^{(10,1)}$. By the decomposition matrix above, the Specht module $S^{(8,3)}$ has composition factors $\left\{D^{(10,1)}, D^{(8,3)}\right\}$. Since the top of $S^{(8,3)}$ is $D^{(8,3)}$ and $S^{(8,3)}$ is a submodule of $Y^{(8,3)}$, the simple module $D^{(10,1)}$ is in the socle of $Y^{(8,3)}$. We deduce the radical series of $Y^{(8,3)}$ by using the self-duality of Young modules, that is,

Similarly, the simple module $D^{(10,1)}$ appears in the top of $Y^{(6,5)}$ because $Y^{(6,5)}$ has Specht filtration whose top is $S^{(10,1)}$. As $(6,5)$ is 2-regular, the top of $S^{(6,5)}$ is $D^{(6,5)}$ and the socle of $S^{(6,5)}$ is $D^{(8,3)}$. Since $S^{(6,5)}$ is the bottom Specht module, it implies that $D^{(8,3)}$ appears in the socle of $Y^{(6,5)}$. By the self-duality of Young modules, we deduce that

Thus, $S_{B_{2}}=\operatorname{End}_{\mathbb{F} G_{11}}\left(Y^{(10,1)} \oplus Y^{(8,3)} \oplus Y^{(6,5)}\right)$ is isomorphic to $\mathbb{F} Q / I$ with

$$
Q:(10,1) \underset{\beta_{1}}{\stackrel{\alpha_{1}}{\rightleftarrows}}(6,5) \underset{\beta_{2}}{\stackrel{\alpha_{2}}{\rightleftarrows}}(8,3) \text { and } I:\left\langle\alpha_{1} \beta_{1}, \beta_{2} \alpha_{2}, \alpha_{1} \alpha_{2} \beta_{2}, \alpha_{2} \beta_{2} \beta_{1}\right\rangle,
$$

where we replace each vertex in Q by λ associated with the Young module Y^{λ}.
Similarly, we use the formula given in Lemma 5.1.6 to calculate the characters of Young modules as follows,

$$
\text { ch } Y^{(11)}=\chi^{(11)} \text {, ch } Y^{(9,2)}=\chi^{(9,2)} \text {, ch } Y^{(7,4)}=\chi^{(11)}+\chi^{(7,4)} .
$$

Then, we have

$$
Y^{(11)}=D^{(11)}, Y^{(9,2)}=D^{(11)}, Y^{(7,4)}=\begin{aligned}
& D^{(7,4)}, \\
& \\
& D^{(11)}
\end{aligned}
$$

and one may easily check that $S_{B_{1}}$ is isomorphic to $\mathbb{F} Q / I \oplus \mathbb{F}$, where

$$
Q:(11) \underset{\beta_{1}}{\stackrel{\alpha_{1}}{\rightleftarrows}}(7,4) \text { and } I:\left\langle\alpha_{1} \beta_{1}\right\rangle .
$$

Therefore, the basic algebra of $S(2,11)$ over $p=2$ is $S_{B_{1}} \oplus S_{B_{2}}$.

5.1.3 Reduction theorems on Schur algebras

We give two useful reduction theorems which will allow us to simplify the general problem to the cases with small n and r. First of all, it is obvious from the previous constructions that $S(n, r)$ with $n>r$ is always Morita equivalent to $S(r, r)$. Then,

Lemma 5.1.8. If $S(n, r)$ is τ-tilting infinite, then so is $S(N, r)$, for any $N>n$.
Proof. Let S be the basic algebra of $S(N, r)$. For each $\lambda \in \Omega(n, r)$, we define e_{λ} to be the projector to Y^{λ} and take the sum $e:=\sum e_{\lambda}$ over all partitions in $\Omega(n, r)$. Then, the idempotent truncation is

$$
e S e=e \operatorname{End}_{\mathbb{F} G_{r}}\left(\underset{\lambda \in \Omega(N, r)}{\bigoplus} Y^{\lambda}\right) e=\operatorname{End}_{\mathbb{F} G_{r}}\left(\underset{\lambda \in \Omega(n, r)}{\bigoplus} Y^{\lambda}\right) .
$$

This implies that the basic algebra of $S(n, r)$ is an idempotent truncation of $S(N, r)$ for any $N>n$. Thus, the statement follows from Proposition 2.3.5.

We recall that the coordinate function $c_{i j}: \mathrm{GL}_{n}(\mathbb{F}) \rightarrow \mathbb{F}$ is defined by $c_{i j}(g)=g_{i j}$ for all $g=\left[g_{i j}\right] \in \mathrm{GL}_{n}(\mathbb{F})$, where $i, j \in\{1,2, \ldots, n\}$. Then, we denote by $A(n, r)$ the coalgebra generated by the homogeneous polynomials of total degree r in $c_{i j}$. In fact, the Schur algebra $S(n, r)$ is just the dual of $A(n, r)$.

Lemma 5.1.9. If $S(n, r)$ is τ-tilting infinite, then so is $S(n, n+r)$.
Proof. It has been proved in [Er] that $S(n, r)$ is a quotient of $S(n, n+r)$. We recall the proof as follows. Let $I=I(n, n+r)$ be the set of maps

$$
\alpha:\{1,2, \ldots, n+r\} \rightarrow\{1,2, \ldots, n\}
$$

with right G_{n+r}-action. Then, $S(n, n+r)$ has a basis $\left\{\xi_{\alpha, \beta} \mid(\alpha, \beta) \in(I \times I) / G_{n+r}\right\}$: the dual basis of $c_{\alpha(1) \beta(1)} c_{\alpha(2) \beta(2)} \cdots c_{\alpha(n+r) \beta(n+r)} \in A(n, n+r)$. Then, the elements $\xi_{\alpha}:=\xi_{\alpha, \alpha}$ form a set of orthogonal idempotents for $S(n, n+r)$ whose sum is the identity. Note that $\Omega(n, n+r) \subseteq I$ is the set of representatives of G_{n+r}-orbits. Let $e=\sum \xi_{\lambda}$ be the idempotent of $S(n, n+r)$, where the sum is taken over all $\lambda \in \Omega(n, n+r)$ such that $\lambda_{n}=0$. Then, by using $\operatorname{det}\left(c_{i j}\right)$, we may get

$$
S(n, n+r) / S(n, n+r) e S(n, n+r) \simeq S(n, r) .
$$

Therefore, the statement follows from Proposition 2.3.5.

5.1.4 Strategy on τ-tilting infinite Schur algebras

Let $A \simeq \mathbb{F} Q / I$ be an algebra presented by a quiver Q and an admissible ideal I. We call Q a τ-tilting infinite quiver if $A / \operatorname{rad}^{2} A$ is τ-tilting infinite. For example, the Kronecker quiver $Q: \circ \Longrightarrow \circ$ is a τ-tilting infinite quiver, see Lemma 3.1.1. Then, the following lemma provides us with three τ-tilting infinite quivers.

Lemma 5.1.10. The following quivers $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ and Q_{3} are τ-tilting infinite quivers,

Proof. We look at the following subquivers,

Since the path algebra of Q_{i}^{\prime} for $i=1,2,3$ is a quotient algebra of $A=\mathbb{F} Q / I$ if $Q=\mathrm{Q}_{i}$, and all of these path algebras are τ-tilting infinite as mentioned in Section 4.2, we conclude that $A / \operatorname{rad}^{2} A$ is τ-tilting infinite if $Q=\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}$ by Proposition 2.3.5.

We remark that Adachi [Ad1] (and Aoki [Ao]) provided a handy criteria for the τ-tilting finiteness of radical square zero algebras, that is, for any algebra A, the quotient $A / \operatorname{rad}^{2} A$ is τ-tilting finite if and only if every single subquiver of the separated quiver for $A / \mathrm{rad}^{2} A$ is a disjoint union of Dynkin quivers. This also gives a proof of Lemma 5.1.10.

We mention that in order to show that $S(n, r)$ is τ-tilting infinite, it suffices to find a block algebra of $S(n, r)$ which is Morita equivalent to $\mathbb{F} Q / I$ with a τ-tilting infinite subquiver in Q. Then, the advantage is that it is not necessary to find the explicit relations in I. To find a τ-tilting infinite subquiver in $S(2, r)$, it is worth mentioning Erdmann and Henke's method [EH1]. Let $\lambda=\left(\lambda_{1}, \lambda_{2}\right)$ and $\mu=\left(\mu_{1}, \mu_{2}\right)$ be two partitions of r, we define two non-negative integers $s:=\lambda_{1}-\lambda_{2}$ and $t:=\mu_{1}-\mu_{2}$. We denote by v^{s} the vertex in the quiver of $S(2, r)$ corresponding to the Young module $Y^{\left(\lambda_{1}, \lambda_{2}\right)}$ with $s=\lambda_{1}-\lambda_{2}$. Let $n\left(v^{s}, v^{t}\right)$ be the number of arrows from v^{s} to v^{t}, then it is shown in [EH1, Theorem 3.1] that $n\left(v^{s}, v^{t}\right)=n\left(v^{t}, v^{s}\right)$ and $n\left(v^{s}, v^{t}\right)$ is either 0 or 1 . We have the following recursive algorithm for computing $n\left(v^{s}, v^{t}\right)$.

Lemma 5.1.11 ([EH1, Proposition 3.1]). Suppose that p is a prime characteristic and $s>t$. Let $s=s_{0}+p s^{\prime}$ and $t=t_{0}+p t^{\prime}$ with $0 \leqslant s_{0}, t_{0} \leqslant p-1$ and $s^{\prime}, t^{\prime} \geqslant 0$.
(1) If $p=2$, then

$$
n\left(v^{s}, v^{t}\right)= \begin{cases}n\left(v^{s^{\prime}}, v^{t^{\prime}}\right) & \text { if } s_{0}=t_{0}=1 \text { or } s_{0}=t_{0}=0 \text { and } s^{\prime} \equiv t^{\prime} \bmod 2, \\ 1 & \text { if } s_{0}=t_{0}=0, t^{\prime}+1=s^{\prime} \not \equiv 0 \bmod 2, \\ 0 & \text { otherwise } .\end{cases}
$$

(2) If $p>2$, then

$$
n\left(v^{s}, v^{t}\right)= \begin{cases}n\left(v^{s^{\prime}}, v^{t^{\prime}}\right) & \text { if } s_{0}=t_{0} \\ 1 & \text { if } s_{0}+t_{0}=p-2, t^{\prime}+1=s^{\prime} \not \equiv 0 \bmod p \\ 0 & \text { otherwise } .\end{cases}
$$

5.2 Representation-finite and tame Schur algebras

In this section, we show that all tame Schur algebras are τ-tilting finite. We first recall the complete classification of the representation type of Schur algebras. Note that some semi-simple cases are contained in the representation-finite cases. We may distinguish the semi-simple cases following [DN. Namely, the Schur algebra $S(n, r)$ is semi-simple if and only if $p=0$, or $p>r$, or $p=2, n=2, r=3$.

Proposition 5.2.1 ([Er, DEMN]). Let $p>0$ be the characteristic of \mathbb{F}. Then, the Schur algebra $S(n, r)$ is representation-finite if and only if $p=2, n=2, r=5,7$ or $p \geqslant 2, n=2, r<p^{2}$ or $p \geqslant 2, n \geqslant 3, r<2 p$; tame if and only if $p=2, n=2, r=4,9,11$ or $p=3, n=2, r=9,10,11$ or $p=3, n=3, r=7,8$. Otherwise, $S(n, r)$ is wild.

5.2.1 Representation-finite blocks

Erdmann [Er, Proposition 4.1] showed that each block A of a representation-finite Schur algebra $S(n, r)$ is Morita equivalent to $\mathcal{A}_{m}:=\mathbb{F} Q / I$ for some $m \in \mathbb{N}$, which is defined by the following quiver and relations,

$$
\begin{gathered}
Q: 1 \underset{\beta_{1}}{\stackrel{\alpha_{1}}{\rightleftarrows}} 2 \underset{\beta_{2}}{\stackrel{\alpha_{2}}{\rightleftarrows}} \cdots \stackrel{\alpha_{m-2}}{\stackrel{\beta_{m-2}}{\rightleftarrows}} m-1 \underset{\beta_{m-1}}{\stackrel{\alpha_{m-1}}{\rightleftarrows}} m, \\
I:\left\langle\alpha_{1} \beta_{1}, \alpha_{i} \alpha_{i+1}, \beta_{i+1} \beta_{i}, \beta_{i} \alpha_{i}-\alpha_{i+1} \beta_{i+1} \mid 1 \leqslant i \leqslant m-2\right\rangle .
\end{gathered}
$$

Three years later after [Er], Donkin and Reiten [DR, Theorem 2.1] generalized this result to an arbitrary Schur algebra, that is, each representation-finite block of Schur algebras is Morita equivalent to \mathcal{A}_{m} for some $m \in \mathbb{N}$.

We would like to determine the number of pairwise non-isomorphic basic support τ-tilting modules for a representation-finite block of Schur algebras.

Theorem 5.2.2. Let \mathcal{A}_{m} be the algebra defined above. Then, $\# \mathrm{~s} \tau$-tilt $\mathcal{A}_{m}=\binom{2 m}{m}$.
Proof. Let Λ_{m} be the Brauer tree algebra whose Brauer tree is a straight line having $m+1$ vertices and without exceptional vertex. Then, it is easy to check that \mathcal{A}_{m} is a quotient algebra of Λ_{m} modulo the two-sided ideal generated by $\alpha_{1} \beta_{1}$. Since $\alpha_{1} \beta_{1}$ is a central element of Λ_{m} and \#s τ-tilt $\Lambda_{m}=\binom{2 m}{m}$ has been determined in AO, Theorem 5.6], we get the statement following Proposition 2.3.6.

5.2.2 Tame Schur algebras

The block algebras of tame Schur algebras are well-studied in [Er and [DEMN. In this subsection, we recall these constructions and show that tame Schur algebras are τ-tilting finite. We recall the following bound quiver algebras constructed in [Er], where the tameness for them is given in DEMN, 5.5, 5.6, 5.7].

- Let $\mathcal{D}_{3}:=\mathbb{F} Q / I$ be the special biserial algebra given by

$$
Q: \circ \stackrel{\alpha_{1}}{\underset{\beta_{1}}{\rightleftarrows}} \circ \stackrel{\alpha_{2}}{\underset{\beta_{2}}{\rightleftarrows}} \circ \text { and } I:\left\langle\alpha_{1} \beta_{1}, \beta_{2} \alpha_{2}, \alpha_{1} \alpha_{2} \beta_{2}, \alpha_{2} \beta_{2} \beta_{1}\right\rangle .
$$

- Let $\mathcal{D}_{4}:=\mathbb{F} Q / I$ be the bound quiver algebra given by

$$
Q: \circ \underset{\beta_{1}}{\stackrel{\alpha_{2}}{\rightleftarrows} \uparrow| |_{0}} \stackrel{\beta_{2}}{\stackrel{\beta_{3}}{\alpha_{3}}} \circ \text { and } I:\left\langle\begin{array}{c}
\alpha_{1} \beta_{1}, \alpha_{2} \beta_{2}, \alpha_{3} \beta_{1}, \alpha_{3} \beta_{2}, \alpha_{1} \beta_{3}, \alpha_{2} \beta_{3}, \\
\alpha_{1} \beta_{2} \alpha_{2}, \beta_{2} \alpha_{2} \beta_{1}, \beta_{2} \alpha_{2}-\beta_{3} \alpha_{3}
\end{array}\right\rangle
$$

- Let $\mathcal{R}_{4}:=\mathbb{F} Q / I$ be the bound quiver algebra given by

$$
Q: \circ \stackrel{\alpha_{1}}{\underset{\beta_{1}}{\rightleftarrows}} \circ \stackrel{\alpha_{2}}{\rightleftarrows} \circ \stackrel{\alpha_{3}}{\rightleftarrows} \circ \beta_{3} \quad \text { and } I:\left\langle\begin{array}{c}
\alpha_{1} \beta_{1}, \alpha_{1} \alpha_{2}, \beta_{2} \beta_{1}, \\
\alpha_{2} \beta_{2}-\beta_{1} \alpha_{1}, \alpha_{3} \beta_{3}-\beta_{2} \alpha_{2}
\end{array}\right\rangle .
$$

- Let $\mathcal{H}_{4}:=\mathbb{F} Q / I$ be the bound quiver algebra given by

$$
Q: 1 \underset{\substack{\beta_{1} \\
\alpha_{2}}}{\stackrel{\alpha_{1}}{\rightleftarrows}} 2 \underset{\beta_{2}}{\stackrel{\beta_{3}}{\beta_{3}}} 4 \text { and } I:\left\langle\begin{array}{c}
\alpha_{1} \beta_{1}, \alpha_{1} \beta_{2}, \alpha_{2} \beta_{1}, \alpha_{2} \beta_{2}, \alpha_{1} \alpha_{3}, \\
\beta_{3} \beta_{1}, \alpha_{3} \beta_{3}-\beta_{1} \alpha_{1}-\beta_{2} \alpha_{2}
\end{array}\right\rangle .
$$

We remark that $\mathcal{D}_{3}, \mathcal{D}_{4}, \mathcal{R}_{4}$ and \mathcal{H}_{4} are also tame blocks of some wild Schur algebras.
Lemma 5.2.3. The tame algebras $\mathcal{D}_{3}, \mathcal{D}_{4}, \mathcal{R}_{4}$ and \mathcal{H}_{4} are τ-tilting finite. Moreover,

A	\mathcal{D}_{3}	\mathcal{D}_{4}	\mathcal{R}_{4}	\mathcal{H}_{4}
\#s τ-tilt A	28	114	88	96

Proof. We often use Proposition 2.3 .6 to reduce the direct calculation of left mutations.
(1) Since $\alpha_{2} \beta_{2}$ and $\beta_{2} \beta_{1} \alpha_{1} \alpha_{2}$ are non-trivial central elements of \mathcal{D}_{3}, we may define

$$
\left.\widetilde{\mathcal{D}_{3}}:=\mathcal{D}_{3} /<\alpha_{2} \beta_{2}, \beta_{2} \beta_{1} \alpha_{1} \alpha_{2}\right\rangle
$$

so that $\# \mathrm{~s} \tau$-tilt $\widetilde{\mathcal{D}_{3}}=\# \mathrm{~s} \tau$-tilt \mathcal{D}_{3}. Then, we determine the number $\# \mathrm{~s} \tau$-tilt $\widetilde{\mathcal{D}_{3}}$ by calculating the left mutations starting with $\widetilde{\mathcal{D}_{3}}$. In fact, this is equivalent to finding the Hasse quiver $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.\widetilde{\mathcal{D}_{3}}\right)$. We recall that the indecomposable projective $\widetilde{\mathcal{D}_{3}}$-modules are

Starting with the unique maximal τ-tilting module $\widetilde{\mathcal{D}_{3}} \simeq P_{1} \oplus P_{2} \oplus P_{3}$, we take an exact sequence with a minimal left $\operatorname{add}\left(P_{2} \oplus P_{3}\right)$-approximation f_{1} of P_{1} :

$$
\frac{1}{2} \xrightarrow{\frac{f_{1}}{3}} \frac{1}{2}_{2_{3}^{2}}^{\longrightarrow} \text { coker } f_{1} \longrightarrow 0
$$

Then, coker $f_{1}={ }_{3}^{2}$ and $\mu_{P_{1}}^{-}\left(\widetilde{\mathcal{D}_{3}}\right)={ }_{3}^{2} \oplus P_{2} \oplus P_{3}$. Next, we take an exact sequence with a minimal left add $\left({ }_{3}^{2} \oplus P_{3}\right)$-approximation f_{2} of P_{2} :

$$
P_{2} \xrightarrow{f_{2}}{ }_{3}^{2} \oplus P_{3} \longrightarrow \text { coker } f_{2} \longrightarrow 0,
$$

so that coker $f_{2}={ }_{2}^{3}$ and $\mu_{P_{2}}^{-}\left(\mu_{P_{1}}^{-}\left(\widetilde{\mathcal{D}_{3}}\right)\right)={ }_{3}^{2} \oplus_{2}^{3} \oplus P_{3}$. Similarly, $\mu_{P_{3}}^{-}\left(\mu_{P_{2}}^{-}\left(\mu_{P_{1}}^{-}\left(\widetilde{\mathcal{D}_{3}}\right)\right)\right)={ }_{3}^{2} \oplus_{2}^{3}$. Then, by the calculation in Example 2.1.7, we have

In this way, one can calculate all possible left mutation sequences starting with $\widetilde{\mathcal{D}_{3}}$ and ending at 0 , so that the Hasse quiver $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.\widetilde{\mathcal{D}_{3}}\right)$ is as follows,

Hence, we deduce that \mathcal{D}_{3} is τ-tilting finite and $\# \mathrm{~s} \tau$-tilt $\mathcal{D}_{3}=28$.
(2) Since $\beta_{2} \alpha_{2}, \alpha_{3} \beta_{3}$ and $\alpha_{2} \beta_{1} \alpha_{1} \beta_{2}$ are central elements of \mathcal{D}_{4}, we define

$$
\widetilde{\mathcal{D}_{4}}:=\mathcal{D}_{4} /<\beta_{2} \alpha_{2}, \alpha_{3} \beta_{3}, \alpha_{2} \beta_{1} \alpha_{1} \beta_{2}>.
$$

Then, $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.\mathcal{D}_{4}\right) \simeq \mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.\widetilde{\mathcal{D}_{4}}\right)$ by Proposition 2.3 .6 . Note that $\widetilde{\mathcal{D}_{4}}$ is just the algebra we dealt with in Example 2.3.10, we have $\#$ s τ-tilt $\mathcal{D}_{4}=114$.
(3) Since $\beta_{1} \alpha_{1}$ and $\beta_{2} \alpha_{2}+\beta_{3} \alpha_{3}$ are non-trivial central elements of \mathcal{R}_{4}, we define

$$
\widetilde{\mathcal{R}_{4}}:=\mathcal{R}_{4} /<\beta_{1} \alpha_{1}, \beta_{2} \alpha_{2}+\beta_{3} \alpha_{3}>
$$

and then, $\# \mathrm{~s} \tau$-tilt $\widetilde{\mathcal{R}_{4}}=\# \mathrm{~s} \tau$-tilt \mathcal{R}_{4}. Instead of direct calculation, we point out that $\widetilde{\mathcal{R}_{4}}$ is a representation-finite string algebra and $\mathcal{H}\left(\mathrm{s} \tau\right.$-tilt $\left.\widetilde{\mathcal{R}_{4}}\right)$ can be constructed by the String Applet Geu. Thus, we deduce that $\# \mathbf{s} \tau$-tilt $\mathcal{R}_{4}=88$.
(4) We recall that $\beta_{1} \alpha_{1}$ and $\beta_{2} \alpha_{2}+\beta_{3} \alpha_{3}$ are central elements of \mathcal{H}_{4}. Then, we define

$$
\widetilde{\mathcal{H}_{4}}:=\mathcal{H}_{4} /<\beta_{1} \alpha_{1}, \beta_{2} \alpha_{2}+\beta_{3} \alpha_{3}>.
$$

Similar to the strategy in Example 2.3.10, we determine the number $\# \mathrm{~s} \tau$-till $\widetilde{\mathcal{H}_{4}}$ step by step. First, we have $a_{0}\left(\widetilde{\mathcal{H}_{4}}\right)=1$ and $a_{1}\left(\widetilde{\mathcal{H}_{4}}\right)=4$.

Let M be a support τ-tilting $\widetilde{\mathcal{H}_{4}}$-module with support-rank 2 , and with supports e_{i} and $e_{j}(i \neq j)$. Then, M becomes a τ-tilting $\widetilde{\mathcal{H}_{4}} / J$-module with $J:=<1-e_{i}-e_{j}>$. We denote by $\mathrm{b}_{i, j}$ the number of τ-tilting $\widetilde{\mathcal{H}}_{4} / J$-modules. Then, it is easy to check that

$$
\begin{array}{c|cccccc}
(i, j) & (1,2) & (1,3) & (1,4) & (2,3) & (2,4) & (3,4) \\
\hline \mathrm{b}_{i, j} & 3 & 1 & 1 & 3 & 3 & 1
\end{array}
$$

This implies that $a_{2}\left(\widetilde{\mathcal{H}_{4}}\right)=12$.
Let N be a support τ-tilting $\widetilde{\mathcal{H}_{4}}$-module with support-rank 3. Then, N becomes a τ-tilting $\widetilde{\mathcal{H}_{4}} / L_{j}$-module with $L_{j}:=\left\langle e_{j}\right\rangle$, where e_{j} is the only one non-zero primitive idempotent satisfying $N e_{j}=0$. We denote by d_{j} the number of τ-tilting $\widetilde{\mathcal{H}}_{4} / L_{j}$-modules. For example, if $j=1$, then

$$
\widetilde{\mathcal{H}_{4}} / L_{1}:=\mathbb{F}\left(3 \underset{\beta_{2}}{\stackrel{\alpha_{2}}{\rightleftarrows}} 2 \underset{\beta_{3}}{\stackrel{\alpha_{3}}{\rightleftarrows}} 4\right) /\left\langle\alpha_{2} \beta_{2}, \beta_{2} \alpha_{2}, \alpha_{3} \beta_{3}\right\rangle .
$$

By direct calculation, we find that $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.\widetilde{\mathcal{H}_{4}} / L_{1}\right)$ is displayed below, where we denote by $\bullet \tau$-tilting modules and by o other support τ-tilting (but not τ-tilting) modules.

Hence, $d_{1}=13$. Similarly, we have $d_{2}=1$ and $d_{3}=d_{4}=9$. Therefore, $a_{3}\left(\widetilde{\mathcal{H}_{4}}\right)=32$.
Next, we compute the left mutations starting with $\widetilde{\mathcal{H}_{4}}$ to find all τ-tilting $\widetilde{\mathcal{H}_{4}}$-modules and the number is 47 . We refer to Appendix A.4 for a complete list of τ-tilting $\widetilde{\mathcal{H}}_{4}$-modules. Besides, the part of $\mathcal{H}\left(\boldsymbol{s} \tau\right.$-tilt $\left.\widetilde{\mathcal{H}_{4}}\right)$ consisting of all τ-tilting $\widetilde{\mathcal{H}_{4}}$-modules can be obtained. Thus, we have $\# \mathrm{~s} \tau$-tilt $\mathcal{H}_{4}=96$.

Theorem 5.2.4. If the Schur algebra $S(n, r)$ is tame, then it is τ-tilting finite.
Proof. We have proved in Lemma 5.2 .3 that $\mathcal{D}_{3}, \mathcal{D}_{4}, \mathcal{R}_{4}$ and \mathcal{H}_{4} are τ-tilting finite. Now, it suffices to make clear that these are all the tame blocks of tame Schur algebras. By Proposition 5.2.1, it is enough to consider $S(2, r)$ for $r=4,9,11$ over $p=2, S(2, r)$ for $r=9,10,11$ and $S(3, r)$ for $r=7,8$ over $p=3$. We have already shown in Example 5.1.7 that the basic algebra of $S(2,11)$ over $p=2$ is isomorphic to $\mathcal{D}_{3} \oplus \mathcal{A}_{2} \oplus \mathbb{F}$. Then, the basic algebra of other tame Schur algebras can be found in [DEMN, Section 5]. We recall the result in DEMN as follows.

Let $p=2$, the basic algebra of $S(2,4)$ is isomorphic to \mathcal{D}_{3} and the basic algebra of $S(2,9)$ is isomorphic to $\mathcal{D}_{3} \oplus \mathbb{F} \oplus \mathbb{F}$. Let $p=3$, the basic algebra of $S(2,9)$ is isomorphic to $\mathcal{D}_{4} \oplus \mathbb{F}$, the basic algebra of $S(2,10)$ is isomorphic to $\mathcal{D}_{4} \oplus \mathbb{F} \oplus \mathbb{F}$ and the basic algebra of $S(2,11)$ is isomorphic to $\mathcal{D}_{4} \oplus \mathcal{A}_{2}$; the basic algebra of $S(3,7)$ is isomorphic to $\mathcal{R}_{4} \oplus \mathcal{A}_{2} \oplus \mathcal{A}_{2}$ and the basic algebra of $S(3,8)$ is isomorphic to $\mathcal{R}_{4} \oplus \mathcal{H}_{4} \oplus \mathcal{A}_{2}$.

5.3 Wild Schur algebras

In this section, we consider wild Schur algebras except for a few small cases in (\star). We point out that these four small cases in (\star) have been settled in a separate paper AW] with Toshitaka Aoki. For the convenience of readers, we will recall the related results without proof in the last section of this chapter.

$$
(\star)\left\{\begin{array}{l}
p=2, n=2, r=8,17,19 \\
p=2, n=3, r=4 \\
p=2, n \geqslant 5, r=5 \\
p \geqslant 5, n=2, p^{2} \leqslant r \leqslant p^{2}+p-1 .
\end{array}\right.
$$

Table 5.1: The τ-tilting finite $S(n, r)$ over $p=2$.

In the rest of this chapter, we will use the decomposition matrix $\left[S^{\lambda}: D^{\mu}\right]$ of $\mathbb{F} G_{r}$ given in Ja] without further notice.

5.3.1 The characteristic $p=2$

We assume in this subsection that the characteristic of \mathbb{F} is 2 . Then, the τ-tilting finiteness for $S(n, r)$ is shown in Table 5.1 and the proof is divided into several propositions as displayed below. Here, the color purple means τ-tilting finite, the color red means τ-tilting infinite, the capital letter S means semi-simple, the capital letter F means representation-finite, the capital letter T means tame and the capital letter W means wild.

Proposition 5.3.1. Let $p=2$. Then, $S(2,6), S(2,13)$ and $S(2,15)$ are τ-tilting finite.
Proof. We consider the Young modules Y^{λ} for partitions λ with at most two parts.
(1) The part of the decomposition matrix $\left[S^{\lambda}: D^{\mu}\right]$ for the partitions in the principal block of $\mathbb{F} G_{6}$ with at most two parts is

$$
\begin{gathered}
(6) \\
(5,1) \\
(4,2) \\
\left(3^{2}\right)
\end{gathered}\left(\begin{array}{lll}
1 & & \\
1 & 1 & \\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)
$$

and the characters of Young $\mathbb{F} G_{6}$-modules are given by Lemma 5.1.6 as follows,

$$
\begin{aligned}
\text { ch } Y^{(6)} & =\chi^{(6)}, \\
\text { ch } Y^{(5,1)} & =\chi^{(6)}+\chi^{(5,1)}, \\
\text { ch } Y^{(4,2)} & =\chi^{(5,1)}+\chi^{(4,2)} \\
\text { ch } Y^{\left(3^{2}\right)} & =\chi^{(6)}+\chi^{(5,1)}+\chi^{(4,2)}+\chi^{\left(3^{2}\right)} .
\end{aligned}
$$

Similar to the method in Example 5.1.7, we compute the radical series of Young modules. Then, one can show that $S_{B}=\operatorname{End}_{F G_{6}}\left(Y^{(6)} \oplus Y^{(5,1)} \oplus Y^{(4,2)} \oplus Y^{\left(3^{2}\right)}\right)$ is isomorphic to $\mathcal{K}_{4}:=\mathbb{F} Q / I$ with

$$
Q: 1 \underset{\beta_{1}}{\stackrel{\alpha_{1}}{\rightleftarrows}} 2 \underset{\beta_{2}}{\stackrel{\alpha_{2}}{\rightleftarrows}} 3 \underset{\beta_{3}}{\stackrel{\alpha_{3}}{\rightleftarrows}} 4 \text { and } I:\left\langle\begin{array}{c}
\alpha_{1} \beta_{1}, \alpha_{2} \beta_{2}, \beta_{3} \alpha_{3}, \alpha_{1} \alpha_{2} \alpha_{3}, \beta_{3} \beta_{2} \beta_{1}, \\
\beta_{1} \alpha_{1} \alpha_{2}-\alpha_{2} \alpha_{3} \beta_{3}, \beta_{2} \beta_{1} \alpha_{1}-\alpha_{3} \beta_{3} \beta_{2}
\end{array}\right\rangle .
$$

(See [DEMN, 3.5] for another method to show this.) Since $\beta_{1} \alpha_{1}+\alpha_{3} \beta_{3}$ and $\beta_{3} \beta_{2} \alpha_{2} \alpha_{3}$ are central elements of \mathcal{K}_{4}, we define

$$
\widetilde{\mathcal{K}_{4}}:=\mathcal{K}_{4} /\left\langle\beta_{1} \alpha_{1}, \alpha_{3} \beta_{3}, \beta_{3} \beta_{2} \alpha_{2} \alpha_{3}\right\rangle .
$$

We have $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.\mathcal{K}_{4}\right) \simeq \mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.\widetilde{\mathcal{K}_{4}}\right)$ by Proposition 2.3.6. Then, similar to the strategy in Example 2.3.10, we have $a_{0}\left(\widetilde{\mathcal{K}_{4}}\right)=1$ and $a_{1}\left(\widetilde{\mathcal{K}_{4}}\right)=4$.

Let M be a support τ-tilting $\widetilde{\mathcal{K}_{4}}$-module with support-rank 2 , and with supports e_{i} and $e_{j}(i \neq j)$. Then, M becomes a τ-tilting $\widetilde{\mathcal{K}_{4}} / J$-module with $J:=<1-e_{i}-e_{j}>$. We denote by $\mathrm{b}_{i, j}$ the number of τ-tilting $\widetilde{\mathcal{K}_{4}} / J$-modules. Then, it is easy to check that

$$
\begin{array}{c|cccccc}
(i, j) & (1,2) & (1,3) & (1,4) & (2,3) & (2,4) & (3,4) \\
\hline \mathrm{b}_{i, j} & 3 & 1 & 1 & 3 & 1 & 3
\end{array} .
$$

This implies that $a_{2}\left(\widetilde{\mathcal{K}_{4}}\right)=12$.
Let N be a support τ-tilting $\widetilde{\mathcal{K}_{4}}$-module with support-rank 3 . Then, N becomes a τ-tilting $\widetilde{\mathcal{K}_{4}} / L_{j}$-module with $L_{j}:=\left\langle e_{j}\right\rangle$, where e_{j} is the only one non-zero primitive idempotent satisfying $N e_{j}=0$. We denote by d_{j} the number of τ-tilting $\widetilde{\mathcal{K}_{4}} / L_{j}$-modules. If $j=1$, then

$$
\widetilde{\mathcal{K}_{4}} / L_{1}:=\mathbb{F}\left(2 \underset{\beta_{2}}{\stackrel{\alpha_{2}}{\rightleftarrows}} 3 \underset{\beta_{3}}{\stackrel{\alpha_{3}}{\rightleftarrows}} 4\right) /\left\langle\alpha_{2} \beta_{2}, \beta_{3} \alpha_{3}, \alpha_{3} \beta_{3}, \beta_{3} \beta_{2} \alpha_{2} \alpha_{3}\right\rangle .
$$

By direct calculation, we can show that the Hasse quiver $\mathcal{H}\left(\mathrm{s} \tau\right.$-tilt $\left.\widetilde{\mathcal{K}_{4}} / L_{1}\right)$ is displayed below, where we denote by $\bullet \tau$-tilting $\widetilde{\mathcal{K}_{4}} / L_{1}$-modules and by \circ other support τ-tilting (but not τ-tilting) $\widetilde{\mathcal{K}_{4}} / L_{1}$-modules,

We deduce that $\mathrm{d}_{1}=17$. If $j=4$, then

$$
\widetilde{\mathcal{K}_{4}} / L_{4}:=\mathbb{F}\left(1 \underset{\beta_{1}}{\stackrel{\alpha_{1}}{\rightleftarrows}} 2 \underset{\beta_{2}}{\stackrel{\alpha_{2}}{\rightleftarrows}} 3\right) /\left\langle\alpha_{1} \beta_{1}, \beta_{1} \alpha_{1}, \alpha_{2} \beta_{2}\right\rangle .
$$

Similarly, the Hasse quiver $\mathcal{H}\left(\mathbf{s} \tau\right.$-tilt $\left.\widetilde{\mathcal{K}_{4}} / L_{4}\right)$ is as follows,

This implies that $d_{4}=13$. Besides, it is not difficult to see that $d_{2}=d_{3}=1 \cdot 3=3$ by the number $\mathrm{b}_{i, j}$ computed in the previous step. Therefore, $a_{3}\left(\widetilde{\mathcal{K}_{4}}\right)=36$.

We compute the left mutations starting with $\widetilde{\mathcal{K}_{4}}$ to find all τ-tilting $\widetilde{\mathcal{K}_{4}}$-modules and the number is 83 . We refer to Appendix A.5 for a complete list of τ-tilting $\widetilde{\mathcal{K}_{4}}$-modules. Therefore, we have $\# \mathbf{s} \tau$-tilt $\mathcal{K}_{4}=1+4+12+36+83=136$ and the statement follows from the fact that \mathcal{K}_{4} is the basic algebra of $S(2,6)$.
(2) The group algebra $\mathbb{F} G_{13}$ contains two blocks, i.e., the principal block B_{1} and the block B_{2} labeled by 2 -core $(2,1)$. The parts of the decomposition matrix $\left[S^{\lambda}: D^{\mu}\right]$ for the partitions in B_{1} and B_{2} with at most two parts are

$$
B_{1}: \begin{gathered}
(13) \\
(11,2) \\
(9,4) \\
(7,6)
\end{gathered}\left(\begin{array}{llll}
1 & & & \\
1 & 1 & & \\
1 & 1 & 1 & \\
1 & 0 & 1 & 1
\end{array}\right), \begin{gathered}
(12,1) \\
B_{2}:(10,3) \\
(8,5)
\end{gathered}\left(\begin{array}{lll}
1 & & \\
0 & 1 & \\
1 & 0 & 1
\end{array}\right) .
$$

We may prove that $S_{B_{1}}$ is isomorphic to \mathcal{K}_{4}, because the characters of Young modules for $\mathbb{F} G_{13}$ are as follows. (One may compare this with the case of $S(2,6)$.)

$$
\begin{aligned}
\text { ch } Y^{(13)} & =\chi^{(13)} \\
\text { ch } Y^{(11,2)} & =\chi^{(13)}+\chi^{(11,2)}, \\
\text { ch } Y^{(9,4)} & =\chi^{(11,2)}+\chi^{(9,4)} \\
\text { ch } Y^{(7,6)} & =\chi^{(13)}+\chi^{(11,2)}+\chi^{(9,4)}+\chi^{(7,6)} .
\end{aligned}
$$

On the other hand, $S_{B_{2}}$ is isomorphic to $\mathcal{A}_{2} \oplus \mathbb{F}$ by [Er, Proposition 4.1], where \mathcal{A}_{n} is explained at the start of subsection 5.2.1. Therefore, the basic algebra of $S(2,13)$ is $\mathcal{K}_{4} \oplus \mathcal{A}_{2} \oplus \mathbb{F}$, which is also τ-tilting finite.
(3) The group algebra $\mathbb{F} G_{15}$ also contains two blocks and the parts of the decomposition matrix $\left[S^{\lambda}: D^{\mu}\right]$ for the partitions with at most two parts are as follows,

$$
\begin{gathered}
(15) \\
(13,2) \\
(11,4) \\
(9,6)
\end{gathered}\left(\begin{array}{llll}
1 & & & \\
0 & 1 & & \\
0 & 0 & 1 & \\
0 & 1 & 0 & 1
\end{array}\right), \begin{gathered}
(14,1) \\
(12,3) \\
(10,5) \\
(8,7)
\end{gathered}\left(\begin{array}{llll}
1 & & & \\
1 & 1 & & \\
1 & 1 & 1 & \\
1 & 0 & 1 & 1
\end{array}\right) .
$$

After computing the characters of Young $\mathbb{F} G_{15}$-modules by Lemma 5.1.6, we deduce that the basic algebra of $S(2,15)$ is isomorphic to $\mathcal{K}_{4} \oplus \mathcal{A}_{2} \oplus \mathbb{F} \oplus \mathbb{F}$.

Now, we look at the case $S(2,8)$. Let B be the principal block of $\mathbb{F} G_{8}$, the part of the decomposition matrix $\left[S^{\lambda}: D^{\mu}\right]$ for the partitions in B with at most two parts is

$$
\begin{gathered}
(8) \\
(7,1) \\
(6,2) \\
(5,3) \\
\left(4^{2}\right)
\end{gathered}\left(\begin{array}{llll}
1 & & & \\
1 & 1 & & \\
0 & 1 & 1 & \\
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right) .
$$

On the other hand, Lemma 5.1.6 implies that the characters of Young $\mathbb{F} G_{8}$-modules are

$$
\begin{aligned}
\text { ch } Y^{(8)} & =\chi^{(8)} \\
\text { ch } Y^{(7,1)} & =\chi^{(8)}+\chi^{(7,1)} \\
\text { ch } Y^{(6,2)} & =\chi^{(8)}+\chi^{(7,1)}+\chi^{(6,2)} \\
\text { ch } Y^{(5,3)} & =\chi^{(6,2)}+\chi^{(5,3)} \\
\text { ch } Y^{\left(4^{2}\right)} & =\chi^{(8)}+\chi^{(7,1)}+\chi^{(6,2)}+\chi^{(5,3)}+\chi^{\left(4^{2}\right)} .
\end{aligned}
$$

It is obvious that $Y^{(8)}=D^{(8)}$ and we may find others as follows.

Note that the dimension of $\operatorname{Hom}_{\mathbb{F} G_{8}}\left(Y^{\lambda}, Y^{\mu}\right)$ between two Young modules Y^{λ}, Y^{μ} is equal to the inner product (ch Y^{λ}, ch Y^{μ}). By direct calculation, we conclude that $S_{B}=$ $\operatorname{End}_{\mathbb{F} G_{8}}\left(Y^{(8)} \oplus Y^{(7,1)} \oplus Y^{(6,2)} \oplus Y^{(5,3)} \oplus Y^{\left(4^{2}\right)}\right)$ is isomorphic to $\mathcal{L}_{5}:=\mathbb{F} Q / I$ with

(8)

$$
I:\left\langle\begin{array}{c}
\alpha_{1} \beta_{1}, \alpha_{1} \alpha_{4}, \beta_{3} \alpha_{3}, \beta_{2} \alpha_{2}, \beta_{4} \alpha_{4}, \beta_{4} \beta_{1}, \beta_{4} \alpha_{2} \beta_{2}, \alpha_{1} \alpha_{2} \alpha_{3}, \alpha_{2} \beta_{2} \alpha_{4}, \beta_{3} \beta_{2} \beta_{1}, \\
\beta_{1} \alpha_{1} \alpha_{2}-\alpha_{2} \alpha_{3} \beta_{3}, \beta_{2} \beta_{1} \alpha_{1}-\alpha_{3} \beta_{3} \beta_{2}, \alpha_{2} \beta_{2} \beta_{1} \alpha_{1}-\beta_{1} \alpha_{1} \alpha_{2} \beta_{2}
\end{array}\right\rangle .
$$

Here, we replace each vertex in the quiver of S_{B} by the partition λ associated with the Young module Y^{λ}. We refer to the last subsection for the τ-tilting finiteness of \mathcal{L}_{5}.

Proposition 5.3.2. Let $p=2$. Then, the wild Schur algebras $S(2,17)$ and $S(2,19)$ are τ-tilting finite if and only if $S(2,8)$ is τ-tilting finite.

Proof. We show that the basic algebra of $S(2,17)$ is isomorphic to $\mathcal{L}_{5} \oplus \mathcal{A}_{2} \oplus \mathbb{F} \oplus \mathbb{F}$. The blocks of $\mathbb{F} G_{17}$ and the parts of the decomposition matrix $\left[S^{\lambda}: D^{\mu}\right]$ for the partitions with at most two parts are as follows,

$$
\begin{aligned}
& (17) \\
& (15,2) \\
& (13,4) \\
& (11,6) \\
& (9,8)
\end{aligned}\left(\begin{array}{llllll}
1 & & & & \\
1 & 1 & & & \\
0 & 1 & 1 & & \\
0 & 1 & 1 & 1 & \\
0 & 1 & 0 & 1 & 1
\end{array}\right), \begin{aligned}
& (16,1) \\
& (14,3) \\
& (12,5) \\
& (10,7)
\end{aligned}\left(\begin{array}{lllll}
1 & & & \\
0 & 1 & & \\
0 & 0 & 1 & \\
0 & 1 & 0 & 1
\end{array}\right) .
$$

In order to identity \mathcal{L}_{5}, it suffices to check the characters of Young $\mathbb{F} G_{17}$-modules:

$$
\begin{aligned}
\text { ch } Y^{(17)} & =\chi^{(17)} \\
\text { ch } Y^{(15,2)} & =\chi^{(17)}+\chi^{(15,2)} \\
\text { ch } Y^{(13,4)} & =\chi^{(17)}+\chi^{(15,2)}+\chi^{(13,4)} \\
\text { ch } Y^{(11,6)} & =\chi^{(13,4)}+\chi^{(11,6)} \\
\text { ch } Y^{(9,8)} & =\chi^{(17)}+\chi^{(15,2)}+\chi^{(13,4)}+\chi^{(11,6)}+\chi^{(9,8)} .
\end{aligned}
$$

For the case $S(2,19)$, the blocks of $\mathbb{F} G_{19}$ and the parts of the decomposition matrix [$\left.S^{\lambda}: D^{\mu}\right]$ for the partitions with at most two parts are

$$
\left.\begin{array}{c}
(19) \\
(17,2) \\
(15,4) \\
(13,6) \\
(11,8)
\end{array}\right)\left(\begin{array}{llllll}
1 & & & & \\
0 & 1 & & & \\
1 & 0 & 1 & & \\
0 & 0 & 0 & 1 & \\
0 & 0 & 1 & 0 & 1
\end{array}\right), \begin{aligned}
& (18,1) \\
& (16,3) \\
& (14,5) \\
& (12,7) \\
& (10,9)
\end{aligned}\left(\begin{array}{llllll}
1 & & & & \\
1 & 1 & & & \\
0 & 1 & 1 & & \\
0 & 1 & 1 & 1 & \\
0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

Also, by Lemma 5.1.6, we have

$$
\begin{aligned}
\text { ch } Y^{(19)} & =\chi^{(19)} \text {, ch } Y^{(15,4)}=\chi^{(19)}+\chi^{(15,4)} \text {, } \\
\text { ch } Y^{(11,8)} & =\chi^{(19)}+\chi^{(15,4)}+\chi^{(11,8)} ; \\
\text { ch } Y^{(18,1)} & =\chi^{(18,1)} \text {, ch } Y^{(16,3)}=\chi^{(18,1)}+\chi^{(16,3)} \\
\text { ch } Y^{(14,5)} & =\chi^{(18,1)}+\chi^{(16,3)}+\chi^{(14,5)}, \text { ch } Y^{(12,7)}=\chi^{(14,5)}+\chi^{(12,7)}, \\
\text { ch } Y^{(10,9)} & =\chi^{(18,1)}+\chi^{(16,3)}+\chi^{(14,5)}+\chi^{(12,7)}+\chi^{(10,9)} .
\end{aligned}
$$

Similar to the above, the basic algebra of $S(2,19)$ is isomorphic to $\mathcal{L}_{5} \oplus \mathcal{D}_{3} \oplus \mathbb{F} \oplus \mathbb{F}$, where \mathcal{D}_{3} is a τ-tilting finite algebra defined in subsection 5.2.2.

Proposition 5.3.3. Let $p=2$.
(1) If r is even, then $S(2, r)$ is τ-tilting infinite for any $r \geqslant 10$.
(2) If r is odd, then $S(2, r)$ is τ-tilting infinite for any $r \geqslant 21$.

Proof. We denote by $\overline{S(2, r)}$ the basic algebra of $S(2, r)$ and we use Lemma 5.1.11 to determine the quiver of $\overline{S(2, r)}$. When we display the quiver of $\overline{S(2, r)}$, we usually replace each vertex by the partition λ associated with Y^{λ}. Then, the quiver of $\overline{S(2,10)}$ is

and the quiver of $\overline{S(2,21)}$ is

Now, it is enough to say that $S(2,10)$ and $S(2,21)$ are τ-tilting infinite by Lemma 5.1.10. Hence, the statement follows from Lemma 5.1.9.

Proposition 5.3.4. Let $p=2$. Then,
(1) the wild Schur algebra $S(3,5)$ is τ-tilting finite.
(2) the wild Schur algebra $S(n, r)$ is τ-tilting infinite for any $n \geqslant 3$ and $r \geqslant 6$.

Proof. We consider the Young modules Y^{λ} for partitions λ with at most three parts. Then, Specht modules S^{μ} in the Specht filtration of Y^{λ} and composition factors D^{μ} which appear in Y^{λ} are also corresponding to the partitions with at most three parts.
(1) We show that the basic algebra of $S(3,5)$ is τ-tilting finite. The group algebra $\mathbb{F} G_{5}$ contains only two blocks, i.e. the principal block B_{1} and the block B_{2} labeled by 2 -core $(2,1)$. The parts of the decomposition matrix $\left[S^{\lambda}: D^{\mu}\right]$ for the partitions in B_{1} and B_{2} with at most three parts are as follows,

$$
B_{1}: \begin{gathered}
(5) \\
(3,2) \\
\left(3,1^{2}\right) \\
\left(2^{2}, 1\right)
\end{gathered}\left(\begin{array}{ll}
1 & \\
1 & 1 \\
2 & 1 \\
1 & 1
\end{array}\right), B_{2}:(4,1)(1)
$$

Combining with [Er, Proposition 5.8], the basic algebra of $S(3,5)$ is isomorphic to $\mathcal{U}_{4} \oplus \mathbb{F}$, where $\mathcal{U}_{4}:=\mathbb{F} Q / I$ is presented by

$$
Q: 1 \underset{\beta_{1}}{\stackrel{\alpha_{1}}{\rightleftarrows}} 2 \underset{\beta_{2}}{\stackrel{\alpha_{2}}{\rightleftarrows}} 3 \underset{\beta_{3}}{\stackrel{\alpha_{3}}{\rightleftarrows}} 4 \text { and } I:\left\langle\alpha_{1} \beta_{1}, \alpha_{2} \beta_{2}, \alpha_{1} \alpha_{2} \alpha_{3}, \beta_{3} \beta_{2} \beta_{1}, \alpha_{3} \beta_{3}-\beta_{2} \alpha_{2}\right\rangle .
$$

Since $\beta_{2} \alpha_{2}+\beta_{3} \alpha_{3}$ and $\beta_{2} \beta_{1} \alpha_{1} \alpha_{2}$ are non-trivial central elements of \mathcal{U}_{4}, the τ-tilting finiteness of \mathcal{U}_{4} is the same as $\widetilde{\mathcal{U}_{4}}:=\mathcal{U}_{4} /\left\langle\beta_{2} \alpha_{2}, \beta_{3} \alpha_{3}, \beta_{2} \beta_{1} \alpha_{1} \alpha_{2}\right\rangle$ by Proposition 2.3.6. Then, similar to the strategy in Example 2.3.10, we have $a_{0}\left(\widetilde{\mathcal{U}_{4}}\right)=1$ and $a_{1}\left(\widetilde{\mathcal{U}_{4}}\right)=4$.

Let M be a support τ-tilting $\widetilde{\mathcal{U}}_{4}$-module with support-rank 2 , and with supports e_{i} and $e_{j}(i \neq j)$. Then, M becomes a τ-tilting $\widetilde{\mathcal{U}_{4}} / J$-module with $J:=<1-e_{i}-e_{j}>$. We denote by $\mathrm{b}_{i, j}$ the number of τ-tilting $\widetilde{\mathcal{U}_{4}} / J$-modules. Then, it is easy to check that

$$
\begin{array}{c|cccccc}
(i, j) & (1,2) & (1,3) & (1,4) & (2,3) & (2,4) & (3,4) \\
\hline \mathrm{b}_{i, j} & 3 & 1 & 1 & 3 & 1 & 3
\end{array} .
$$

This implies that $a_{2}\left(\widetilde{\mathcal{U}_{4}}\right)=12$.
Let N be a support τ-tilting $\widetilde{\mathcal{U}}_{4}$-module with support-rank 3 . Then, N becomes a τ-tilting $\widetilde{\mathcal{U}_{4}} / L_{j}$-module with $L_{j}:=\left\langle e_{j}\right\rangle$, where e_{j} is the only one non-zero primitive idempotent satisfying $N e_{j}=0$. We denote by d_{j} the number of τ-tilting $\widetilde{\mathcal{U}_{4}} / L_{j}$-modules. Similar to the case $\widetilde{\mathcal{K}_{4}}$ in Proposition 5.3.1, we have $\mathrm{d}_{1}=13, \mathrm{~d}_{2}=\mathrm{d}_{3}=3$ and $\mathrm{d}_{4}=17$. Therefore, $a_{3}\left(\widetilde{\mathcal{U}_{4}}\right)=36$.

Finally, we compute the left mutations starting with $\widetilde{\mathcal{U}_{4}}$ to find all τ-tilting $\widetilde{\mathcal{U}_{4}}$-modules and the number is 83 . Since this number can be verified by the String Applet Geu, we omit the detailed computation. Therefore, we have $\# \mathbf{s} \boldsymbol{\tau}$-tilt $\mathcal{U}_{4}=1+4+12+36+83=136$.
(2) We shall show that $S(3,6), S(3,7)$ and $S(3,8)$ are τ-tilting infinite. Then, the statement follows from Lemma 5.1.8 and Lemma 5.1.9. As we are already familiar with the strategy of determining the radical series of Young modules and the basic algebras of Schur algebras, we may leave this heavy work to a computer and some mathematicians indeed did. Here, we refer to Carlson and Matthews's program [CM].
(2.1) Let B be the principal block of $\mathbb{F} G_{6}$, the part of the decomposition matrix [$S^{\lambda}: D^{\mu}$] for the partitions in B with at most three parts is of the form

$$
\begin{gathered}
(6) \\
(5,1) \\
(4,2) \\
\left(4,1^{2}\right) \\
\left(3^{2}\right) \\
\left(2^{3}\right)
\end{gathered}\left(\begin{array}{lll}
1 & & \\
1 & 1 & \\
1 & 1 & 1 \\
2 & 1 & 1 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right)
$$

Then, the quiver of $S_{B}=\operatorname{End}_{\mathbb{F} G_{6}}\left(\underset{\lambda \in B \cap \Omega(3,6)}{\bigoplus} Y^{\lambda}\right)$ is as follows,

(2.2) Let B be the principal block of $\mathbb{F} G_{7}$, the part of the decomposition matrix [$S^{\lambda}: D^{\mu}$] for the partitions in B with at most three parts is of the form

(7)
$(5,2)$
$(4,2,1)$
$\left(5,1^{2}\right)$
$\left(3^{2}, 1\right)$
$\left(3,2^{2}\right)$

0 \& 1 \&

1 \& 1 \& 1

1 \& 1 \& 0

1 \& 0 \& 1

1 \& 0 \& 1\end{array}\right)\).

Then, the quiver of $S_{B}=\operatorname{End}_{\mathbb{F} G_{7}}\left(\underset{\lambda \in B \cap \Omega(3,7)}{ } Y^{\lambda}\right)$ is as follows,

(2.3) Let B be the principal block of $\mathbb{F} G_{8}$, the part of the decomposition matrix [$S^{\lambda}: D^{\mu}$] for the partitions in B with at most three parts is of the form

(8)
$(7,1)$
$(6,2)$
$(5,3)$
$(4,3,1)$
$\left(4^{2}\right)$
$\left(6,1^{2}\right)$
$\left(4,2^{2}\right)$
$\left(3^{2}, 2\right)$

1 \& 1 \& \& \&

0 \& 1 \& 1 \& \&

0 \& 1 \& 1 \& 1 \&

2 \& 1 \& 1 \& 1 \& 1

0 \& 1 \& 0 \& 1 \& 0

1 \& 1 \& 1 \& 0 \& 0

2 \& 0 \& 1 \& 0 \& 1

2 \& 0 \& 0 \& 0 \& 1\end{array}\right)\).

Then, the quiver of $S_{B}=\operatorname{End}_{\mathbb{F} G_{8}}\left(\underset{\lambda \in B \cap \Omega(3,8)}{ } Y^{\lambda}\right)$ is as follows,

By Lemma 5.1.10, we conclude that $S(3,6), S(3,7)$ and $S(3,8)$ are τ-tilting infinite.
Corollary 5.3.5. Let $p=2$. The wild Schur algebra $S(4,5)$ is τ-tilting finite.
Proof. We consider the Young modules Y^{λ} for partitions λ of 5 with at most four parts. Note that $S(3,5)$ is an idempotent truncation of $S(4,5)$ as we mentioned in Lemma 5.1.8. Compared with the case $S(3,5)$, the case $S(4,5)$ has only one additional partition $\left(2,1^{3}\right)$ which appears in the block of $\mathbb{F} G_{5}$ labeled by 2-core $(2,1)$. Then, the basic algebra of $S(4,5)$ is isomorphic to $\mathcal{U}_{4} \oplus \mathcal{A}_{2}$ based on the result on $S(3,5)$.

Proposition 5.3.6. Let $p=2$. The algebra $S(n, 4)$ is τ-tilting infinite for any $n \geqslant 4$.
Proof. By our strategy in Section 5.1, one can see that $S(n, 4)$ with $n \geqslant 5$ is always Morita equivalent to $S(4,4)$. So it is enough to show that $S(4,4)$ is τ-tilting infinite. In fact, the quiver of the basic algebra of $S(4,4)$ displayed below implies our statement.

This quiver has been given by Xi in Xi .
Hence, we have already determined the τ-tilting finiteness of wild Schur algebras over $p=2$, except for $S(2, r)$ with $r=8,17,19, S(3,4)$ and $S(n, 5)$ with $n \geqslant 5$.

Table 5.2: The τ-tilting finite $S(n, r)$ over $p=3$.

r	1	2	3	4	5	6	7	8	9	10	11	12	13	\ldots
2	S	S	F	F	F	F	F	F	T	T	T	W	W	\ldots
3	S	S	F	F	F	W	T	T	W	W	W	W	W	\ldots
4	S	S	F	F	F	W	W	W	W	W	W	W	W	\ldots
5	S	S	F	F	F	W	W	W	W	W	W	W	W	\ldots
\vdots	\ddots													

Remark 5.3.7. We recall from [DEMN, 3.6] that the basic algebra of $S(3,4)$ over $p=2$ is presented by the bound quiver algebra $\mathcal{M}_{4}:=\mathbb{F} Q / I$ with

Remark 5.3.8. Let $p=2$. The wild Schur algebra $S(n, 5)$ with $n \geqslant 6$ is always Morita equivalent to $S(5,5)$. Moreover, the basic algebra of $S(5,5)$ is isomorphic to $\mathcal{N}_{5} \oplus \mathcal{A}_{2}$ following [Xi, Proposition 3.8], where $\mathcal{N}_{5}:=\mathbb{F} Q / I$ is presented by

$$
\begin{gathered}
Q: \circ \stackrel{\alpha_{1}}{\rightleftarrows} \circ \stackrel{\alpha_{2}}{\rightleftarrows} \circ \stackrel{\alpha_{3}}{\rightleftarrows} \circ \stackrel{\alpha_{4}}{\rightleftarrows} \circ \frac{\beta_{3}}{\rightleftarrows} \circ \text { with } \\
I:\left\langle\begin{array}{c}
\alpha_{1} \beta_{1}, \alpha_{2} \beta_{2}, \alpha_{3} \beta_{3}, \beta_{4} \alpha_{4}, \alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}, \beta_{4} \beta_{3} \beta_{2} \beta_{1}, \beta_{2} \alpha_{2}-\alpha_{3} \alpha_{4} \beta_{4} \beta_{3}, \\
\alpha_{2} \alpha_{3} \alpha_{4} \beta_{4}-\beta_{1} \alpha_{1} \alpha_{2} \alpha_{3}, \beta_{3} \beta_{2} \beta_{1} \alpha_{1}-\alpha_{4} \beta_{4} \beta_{3} \beta_{2}
\end{array}\right\rangle .
\end{gathered}
$$

5.3.2 The characteristic $p=3$

We assume in this subsection that the characteristic of \mathbb{F} is 3 . Then, the τ-tilting finiteness for $S(n, r)$ is shown in Table 5.2 and the proof is divided into the propositions displayed below. Here, we use the same conventions with Table 5.1.

Proposition 5.3.9. Let $p=3$. Then, $S(2, r)$ is τ-tilting infinite for any $r \geqslant 12$.
Proof. We show that both $S(2,12)$ and $S(2,13)$ are τ-tilting infinite and the statement follows from Lemma 5.1.9. In fact, let B be the principal block of $\mathbb{F} G_{12}$ and the quiver of $S_{B}=\operatorname{End}_{\mathbb{F} G_{12}}\left(\underset{\lambda \in B \cap \Omega(2,12)}{\bigoplus^{\lambda}}\right)$ following Lemma 5.1.11 is

where we replace each vertex by the partition λ associated with Y^{λ}. Thus, $S(2,12)$ is τ-tilting infinite by Lemma 5.1.10. One can check that $S(2,13)$ also contains a τ-tilting infinite subquiver as shown above.

In the following, we refer to [CM for the quiver of S_{B} without further notice.
Proposition 5.3.10. Let $p=3$. Then, $S(3,6)$ and $S(3, r)$ with $r \geqslant 9$ are τ-tilting infinite. Proof. According to Lemma 5.1.9, it suffices to show that $S(3,6), S(3,10)$ and $S(3,11)$ are τ-tilting infinite.
(1) Let B be the principal block of $\mathbb{F} G_{6}$, the part of the decomposition matrix $\left[S^{\lambda}: D^{\mu}\right]$ for the partitions in B with at most three parts is of the form

$$
\begin{gathered}
(6) \\
(5,1) \\
\left(4,1^{2}\right) \\
\left(3^{2}\right) \\
(3,2,1) \\
\left(2^{3}\right)
\end{gathered}\left(\begin{array}{lllll}
1 & & & & \\
1 & 1 & & & \\
0 & 1 & 1 & & \\
0 & 1 & 0 & 1 & \\
1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Then, the quiver of $S_{B}=\operatorname{End}_{\mathbb{F} G_{6}}\left(\underset{\lambda \in B \cap \Omega(3,6)}{ } Y^{\lambda}\right)$ is as follows.

(2) Let B_{1} be the principal block of $\mathbb{F} G_{10}$ and B_{2} the block of $\mathbb{F} G_{11}$ labeled by 3-core $\left(1^{2}\right)$. Then, the parts of the decomposition matrix $\left[S^{\lambda}: D^{\mu}\right]$ for the partitions in B_{1} and B_{2} with at most three parts are of the form

$$
B_{1}: \begin{gathered}
(10) \\
(8,2) \\
(7,3) \\
(7,2,1) \\
\left(5^{2}\right) \\
\left(4,3^{2}\right)
\end{gathered}\left(\begin{array}{lllllll}
1 & & & & & \\
1 & 1 & & & & \\
0 & 1 & 1 & & & \\
1 & 1 & 1 & 1 & & \\
0 & 0 & 1 & 0 & 1 & \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right), B_{2}: \begin{array}{cccccc}
(10,1) \\
(9,2) \\
(7,4) \\
\left(7,2^{2}\right) \\
(6,5) \\
\left(4^{2}, 3\right)
\end{array}\left(\begin{array}{lllllll}
1 & & & & & \\
1 & 1 & & & & \\
0 & 1 & 1 & & & \\
1 & 1 & 1 & 1 & & \\
0 & 0 & 1 & 0 & 1 & \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right) .
$$

Then, both the quivers of $S_{B_{1}}$ and $S_{B_{2}}$ are as follows.

By Lemma 5.1.10, the above two cases are τ-tilting infinite quivers.
Proposition 5.3.11. Let $p=3$. The wild Schur algebra $S(n, r)$ is τ-tilting infinite for any $n \geqslant 4$ and $r \geqslant 6$.

Proof. Based on the result of $S(3, r)$, Lemma 5.1.8 and Lemma 5.1.9, it suffices to show that $S(4,7)$ and $S(4,8)$ are τ-tilting infinite.
(1) Let B be the principal block of $\mathbb{F} G_{7}$, the part of the decomposition matrix $\left[S^{\lambda}: D^{\mu}\right]$ for the partitions in B with at most four parts is of the form

$$
\begin{gathered}
(7) \\
(5,2) \\
(4,3) \\
(4,2,1) \\
\left(3,2,1^{2}\right) \\
\left(4,1^{3}\right) \\
\left(2^{3}, 1\right)
\end{gathered}\left(\begin{array}{llllll}
1 & & & & \\
1 & 1 & & & \\
0 & 1 & 1 & & \\
1 & 1 & 1 & 1 & \\
1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Then, the quiver of $S_{B}=\operatorname{End}_{\mathbb{F} G_{7}}\left(\underset{\lambda \in B \cap \Omega(4,7)}{ } Y^{\lambda}\right)$ is as follows.

(2) Let B be the block of $\mathbb{F} G_{8}$ labeled by 3 -core $\left(1^{2}\right)$, the part of the decomposition matrix $\left[S^{\lambda}: D^{\mu}\right]$ for the partitions in B with at most four parts is of the form

$$
\begin{gathered}
(7,1) \\
(6,2) \\
\left(4^{2}\right) \\
\left(4,2^{2}\right) \\
\left(3,2^{2}, 1\right)
\end{gathered}\left(\begin{array}{llllll}
1 & & & & \\
1 & 1 & & & \\
0 & 1 & 1 & & \\
1 & 1 & 1 & 1 & \\
1 & 0 & 0 & 1 & 1
\end{array}\right)
$$

Then, the quiver of $S_{B}=\operatorname{End}_{\mathbb{F} G_{8}}\left(\underset{\lambda \in B \cap \Omega(4,8)}{\bigoplus} Y^{\lambda}\right)$ is as follows.

Obviously, $S(4,7)$ and $S(4,8)$ are τ-tilting infinite.
Hence, we have determined the τ-tilting finiteness for all the cases over $p=3$.

5.3.3 The characteristic $p \geqslant 5$

The situation on $p \geqslant 5$ is much easier than the situation on $p=2,3$. As shown in Proposition 5.2.1, tame Schur algebras do not appear in this case. Then, the τ-tilting finiteness for $S(n, r)$ is shown in Table 5.3 and the proof is divided into two propositions. Here, we use the same conventions with Table 5.1.

Proposition 5.3.12. Let $p \geqslant 5$. The algebra $S(2, r)$ is τ-tilting infinite for any $r \geqslant p^{2}+p$.
Proof. It suffices to consider $S\left(2, p^{2}+p\right)$ and $S\left(2, p^{2}+p+1\right)$ following Lemma 5.1.9. To show the τ-tilting finiteness of $S\left(2, p^{2}+p\right)$, we choose four partitions

$$
\left(p^{2}+p\right),\left(p^{2}+p-1,1\right),\left(p^{2}-p, 2 p\right),\left(p^{2}-1, p+1\right)
$$

Table 5.3: The τ-tilting finite $S(n, r)$ over $p \geqslant 5$.

r	$1 \sim p$	$p+1 \sim 2 p-1$	$2 p \sim p^{2}-1$	$p^{2} \sim p^{2}+p-1$	$p^{2}+p \sim \infty$
n	S	F	F	W	W
2	S	F	W	W	W
3	S	F	W	W	W
4	S	W			
5	S	F	W	W	W
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots

which are contained in the principal block B of $\mathbb{F} G_{p^{2}+p}$. By Lemma 5.1.11, one may construct the following subquiver in the quiver of S_{B}.

This is just the τ-tilting infinite quiver Q_{1} and therefore, $S\left(2, p^{2}+p\right)$ is τ-tilting infinite.
Moreover, we can show that $S\left(2, p^{2}+p+1\right)$ contains the τ-tilting infinite quiver Q_{1} as a subquiver if we choose $\left(p^{2}+p+1\right),\left(p^{2}+p-1,2\right),\left(p^{2}-p+1,2 p\right)$ and $\left(p^{2}-1, p+2\right)$.

Proposition 5.3.13. Let $p \geqslant 5$. The wild Schur algebra $S(n, r)$ is τ-tilting infinite for any $n \geqslant 3$ and $r \geqslant 2 p$.

Proof. It suffices to consider $S(3, r)$ for $r=2 p+x$ with $0 \leqslant x \leqslant 2$. Let B be the principal block of $\mathbb{F} G_{r}$. Then, the part of the decomposition matrix $\left[S^{\lambda}: D^{\mu}\right]$ for the partitions in B with at most three parts is of the form

$$
\begin{array}{c|ccccc}
(2 p+x) \\
(2 p-1,1+x) \\
(p+x, p) \\
(2 p-2,1+x, 1) \\
(p+x, p-1,1) \\
\left((p-1)^{2}, 2+x\right)
\end{array}\left(\begin{array}{lllllll}
1 & & & & & \\
1 & 1 & & & & \\
0 & 1 & 1 & & & \\
0 & 1 & 0 & 1 & & \\
1 & 1 & 1 & 1 & 1 & \\
1 & 0 & 0 & 0 & 1 & 1
\end{array}\right) .
$$

We recall from [Er, Proposition 5.3.1] that the quiver of S_{B} is

Then, the statement follows from Lemma 5.1.8, 5.1.9 and 5.1.10.
Hence, we have already determined the τ-tilting finiteness of wild Schur algebras over $p \geqslant 5$, except for $S(2, r)$ with $p^{2} \leqslant r \leqslant p^{2}+p-1$.

5.3.4 The remaining cases

In this subsection, we present the τ-tilting finiteness of the remaining cases. We refer to [AW] for details and proofs.
(1) $p=2, n=2, r=8,17$, 19. It is proved in Proposition 5.3.2 that the basic algebra of $S(2,8)$ is isomorphic to \mathcal{L}_{5}, the basic algebra of $S(2,17)$ is isomorphic to $\mathbb{F} \oplus \mathbb{F} \oplus \mathcal{A}_{2} \oplus \mathcal{L}_{5}$ and the basic algebra of $S(2,19)$ is isomorphic to $\mathbb{F} \oplus \mathbb{F} \oplus \mathcal{D}_{3} \oplus \mathcal{L}_{5}$. Since $\mathbb{F}, \mathcal{A}_{2}$ and \mathcal{D}_{3} are τ-tilting finite, the problem in this case is to determine the τ-tilting finiteness of \mathcal{L}_{5}.
(2) $p=2, n=3, r=4$. It is claimed in Remark 5.3.7 that the basic algebra of $S(3,4)$ is isomorphic to \mathcal{M}_{4}.
(3) $p=2, n \geqslant 5, r=5$. It is claimed in Remark 5.3 .8 that the basic algebra of $S(n, 5)$ is Morita equivalent to $\mathcal{N}_{5} \oplus \mathcal{A}_{2}$.
(4) $p \geqslant 5, n=2, p^{2} \leqslant r \leqslant p^{2}+p-1$. We recall from AW] that the Schur algebra $S(2, r)$ with $p^{2} \leqslant r \leqslant p^{2}+p-1$ contains only $\mathbb{F}, \mathcal{A}_{n}$ with $2 \leqslant n \leqslant p$ and \mathcal{D}_{p+1} as block algebras, where $\mathcal{D}_{m}:=\mathbb{F} Q / I(m \geqslant 5)$ is presented by

Note that \mathcal{D}_{3} and \mathcal{D}_{4} are defined in Section 5.2. Since \mathbb{F} and \mathcal{A}_{n} are τ-tilting finite, the problem in this case is to determine the τ-tilting finiteness of \mathcal{D}_{p+1}.

Finally, we have
Theorem 5.3.14 ($\widehat{\mathrm{AW}}]$). Let $S(n, r)$ be the Schur algebra over \mathbb{F}.
(1) If $p=2$, then $S(2,8), S(2,17)$ and $S(2,19)$ are τ-tilting finite.
(2) If $p=2$, then $S(3,4)$ is τ-tilting finite.
(3) If $p=2$, then $S(n, 5)$ is τ-tilting infinite for any $n \geqslant 5$.
(4) If $p \geqslant 5$, then $S(2, r)$ is τ-tilting finite for any $p^{2} \leqslant r \leqslant p^{2}+p-1$.

Appendix A

A. 1 Table T and Table W

For the algebras T_{i} and W_{i} in Table T and Table W , respectively, we mean the bound quiver algebras with an admissible ideal generated by the relation (i).

Table T
$\circ \stackrel{\mu_{1}, \mu_{2}}{\underset{\nu_{1}, \nu_{2}}{\rightleftarrows}} \circ$
(1) $\nu_{1} \mu_{1}=\nu_{2} \mu_{2}=\left(\ell_{1} \mu_{1}+\ell_{2} \mu_{2}\right)\left(k_{1} \nu_{1}+k_{2} \nu_{2}\right)=\left(\ell_{3} \mu_{1}+\ell_{4} \mu_{2}\right)\left(k_{3} \nu_{1}+k_{4} \nu_{2}\right)=0$, where $k_{1}, k_{2}, k_{3}, k_{4}, \ell_{1}, \ell_{2}, \ell_{3}, \ell_{4} \in K$ and $k_{1} k_{4} \neq k_{2} k_{3}, \ell_{1} \ell_{4} \neq \ell_{2} \ell_{3}$.

(2) $\alpha^{6}=\alpha^{2} \mu=0$;

(3) $\alpha^{2}=\beta^{2}=0$;
(4) $\alpha^{2}=\beta^{n}=\mu \beta=0,2 \leqslant n \in \mathbb{N}$;
(5) $\alpha^{m}=\beta^{n}=\alpha \mu=\mu \beta=0,2 \leqslant m, n \in \mathbb{N}$;
(6) $\alpha^{2}=\beta^{3}=0, \alpha \mu=\mu \beta^{2}$;
(7) $\alpha^{3}=\beta^{6}=0, \alpha \mu=\mu \beta$;
(8) $\alpha^{4}=\beta^{4}=0, \alpha \mu=\mu \beta$;

(9) $\alpha^{2}=\mu \nu \mu=\nu \mu \nu=(\nu \alpha \mu)^{n}=0$, $1 \leqslant n \in \mathbb{N}$;
(10) $\alpha^{3}=\mu \nu=\nu \mu=\nu \alpha \mu=0$;
(11) $\alpha^{3}=\mu \nu, \nu \mu=\nu \alpha^{2}=\alpha^{2} \mu=0$;
(12) $\alpha^{4}=\mu \nu, \nu \alpha=\alpha^{2} \mu=0$;
(13) $\alpha^{m}=\nu \alpha=\alpha \mu=(\mu \nu)^{n}=0,2 \leqslant m \in$
$\mathbb{N}, 1 \leqslant n \in \mathbb{N}$;
(14) $\alpha^{2}=\mu \nu, \nu \alpha \mu=0$;
(15) $\alpha^{3}=\mu \nu, \nu \alpha=\alpha^{2} \mu=0$;
(16) $\alpha^{3}=\mu \nu, \nu \alpha=\nu \mu=0$;

$$
\alpha \curvearrowright \circ \frac{\mu}{\nu} \circ \Im \beta
$$

(17) $\alpha^{2}=\beta^{2}=\nu \mu=\mu \nu=0$;
(18) $\alpha^{2}=\beta^{m}=\nu \mu=\mu \beta=\beta \nu=(\nu \alpha \mu)^{n}=0,2 \leqslant m \in \mathbb{N}, 1 \leqslant n \in \mathbb{N}$;
(19) $\alpha^{m}=\beta^{n}=(\nu \mu)^{r}=\alpha \mu=\nu \alpha=\mu \beta=\beta \nu=0,2 \leqslant m, n \in \mathbb{N}, 1 \leqslant r \in \mathbb{N}$;
(20) $\alpha^{2}=\mu \nu, \beta^{2}=\nu \mu, \beta \nu=0, \alpha \mu=k \mu \beta, k \in K /\{0\}$;
(21) $\alpha^{m}=\beta^{n}=0, \beta^{2}=\nu \mu, \nu \alpha=\beta \nu, k_{1} \alpha^{2}=\mu \nu, \alpha \mu=k_{2} \mu \beta$,
$k_{1}, k_{2} \in K /\{0\}, m, n \geqslant 2, m, n \in \mathbb{N}$.

Table W
$\bigcirc \stackrel{\mu_{1}, \mu_{2}, \mu_{3}}{\Longrightarrow}$
(1) $K Q(0,3,0,0)$;

$$
\bigcirc \stackrel{\mu_{1}, \mu_{2}}{\stackrel{\nu}{<}} \circ
$$

(2) $\mu_{1} \nu=\mu_{2} \nu=0$;

(3) $\nu_{2} \mu_{1}=\nu_{1} \mu_{2}, \mu_{1} \nu_{1}=\mu_{2} \nu_{1}=\mu_{1} \nu_{2}=\mu_{2} \nu_{2}=\nu_{1} \mu_{1}=0$;

(4) $\alpha_{1}^{2}=\alpha_{2}^{2}=\alpha_{1} \alpha_{2}=\alpha_{2} \alpha_{1}=0$,

$$
\alpha_{1} \mu=\alpha_{2} \mu=0
$$

(5) $\alpha^{2}=\alpha \mu_{1}=\alpha \mu_{2}=0$;

(6) $\alpha^{7}=\alpha^{2} \mu=0$;
(7) $\alpha^{4}=\alpha^{3} \mu=0$;

(14) $\alpha^{3}=\mu \nu=\nu \mu=\alpha^{2} \mu=0$;
(15) $\alpha^{3}=\mu \nu=\alpha \mu=0$;
(16) $\alpha^{3}=\mu \nu=\nu \alpha \mu=\nu \alpha^{2}=\alpha^{2} \mu=0$;
(17) $\alpha^{4}=\mu \nu=\nu \mu=\alpha \mu=\nu \alpha^{3}=0$;
(18) $\alpha^{4}=\mu \nu=\nu \mu=\nu \alpha \mu=\nu \alpha^{2}=\alpha^{2} \mu=$ 0;
(8) $\alpha^{2}=\beta^{3}=\alpha \mu=0$;
(9) $\alpha^{3}=\beta^{3}=\alpha \mu=\mu \beta^{2}=0$;
(10) $\alpha^{2}=\beta^{4}=\alpha \mu=\mu \beta^{2}=0$;
(19) $\alpha^{5}=\mu \nu=\nu \mu=\nu \alpha=\alpha^{2} \mu=0$;
(20) $\alpha^{2}=\nu \alpha=\nu \mu \nu=\alpha \mu \nu=0$;
(21) $\alpha^{2}=\nu \alpha=\mu \nu \mu=0$;
(11) $\alpha^{2}=\beta^{3}=\alpha \mu \beta=\mu \beta^{2}=0$;
(22) $\alpha^{3}=\nu \mu=\nu \alpha=\alpha \mu \nu=\alpha^{2} \mu=0$;
(12) $\alpha^{4}=\beta^{5}=\mu \beta^{2}=0, \alpha \mu=\mu \beta$;
(23) $\alpha^{2}=\mu \nu, \alpha^{3}=\alpha^{2} \mu=0$;
(13) $\alpha^{3}=\beta^{7}=\mu \beta^{2}=0, \alpha \mu=\mu \beta$;
(24) $\alpha^{3}=\mu \nu, \alpha^{4}=\nu \mu=\nu \alpha \mu=\nu \alpha^{2}=0$;

$\alpha \circlearrowleft \circ \frac{\mu}{\ll} \circ \rho \beta$

(25) $\alpha^{3}=\beta^{2}=\nu \mu=\mu \nu=\nu \alpha=\mu \beta=\beta \nu=\alpha^{2} \mu=0$;
(26) $\alpha^{2}=\beta^{2}=\nu \mu=\alpha \mu=\nu \alpha=\beta \nu=0$;
(27) $\alpha^{2}=\mu \nu, \beta^{2}=\nu \mu=\alpha \mu=\mu \beta=\beta \nu \alpha=0$;
(28) $\alpha^{2}=\mu \nu, \beta^{2}=\nu \mu=\alpha \mu=\beta \nu=0$;
(29) $\alpha^{2}=\mu \nu, \beta^{2}=\nu \mu=\nu \alpha=\mu \beta=0$;
(30) $\alpha^{2}=\mu \nu, \beta^{2}=\nu \mu=\nu \alpha=\beta \nu=\alpha \mu \beta=0$;
(31) $\alpha \mu=\mu \beta, \alpha^{2}=\beta^{3}=\mu \nu=\nu \alpha=\beta \nu=\mu \beta^{2}=0$;
(32) $\alpha \mu=\mu \beta, \alpha^{2}=\beta^{2}=\nu \alpha=\beta \nu=\mu \nu \mu=\nu \mu \nu=0$;
(33) $\alpha \mu=\mu \beta, \alpha^{3}=\beta^{3}=\nu \mu=\mu \nu=\nu \alpha=\beta \nu=\mu \beta^{2}=\alpha^{2} \mu=0$;
(34) $\alpha \mu=\mu \beta, \alpha^{3}=\beta^{2}=\nu \mu=\nu \alpha=\beta \nu=\alpha^{2} \mu=0$.

A. 2 Supporting materials of Example 2.3.9

We denote by $Q_{s}(A)$ the set of pairwise non-isomorphic basic support τ-tilting A modules with support-rank s. In order to give a proof of Example 2.3.9, we need the following observation. Let \mathbf{A}_{n} be the path algebra presented by

$$
1 \longrightarrow 2 \longrightarrow 3 \longrightarrow \cdots \longrightarrow n-1 \longrightarrow n .
$$

Then, the indecomposable projective \mathbf{A}_{n}-module P_{1} at vertex 1 is the unique indecomposable projective-injective \mathbf{A}_{n}-module.

Lemma A. 2.1 (see also Ad2]). With the above notations, any τ-tilting \mathbf{A}_{n}-module T contains P_{1} as an indecomposable direct summand. Moreover, there exists a bijection

$$
Q_{n}\left(\mathbf{A}_{n}\right) \longleftrightarrow Q_{n-1}\left(\mathbf{A}_{n}\right)
$$

given by $Q_{n}\left(\mathbf{A}_{n}\right) \ni T \longmapsto T / P_{1} \in Q_{n-1}\left(\mathbf{A}_{n}\right)$.
Proof. Let P_{i} be the indecomposable projective \mathbf{A}_{n}-module at vertex i. By the poset structure on $\boldsymbol{s} \tau$-tilt \mathbf{A}_{n}, any τ-tilting \mathbf{A}_{n}-module $M \not 千 \mathbf{A}_{n}$ satisfies $M \leq \mu_{P_{i}}^{-}\left(\mathbf{A}_{n}\right)$ for some $1 \leqslant i \leqslant n$. Since $\mu_{P_{1}}^{-}\left(\mathbf{A}_{n}\right)$ is support-rank $n-1$ and all $\mu_{P_{i}}^{-}\left(\mathbf{A}_{n}\right)$ with $i \geqslant 2$ have P_{1} as a direct summand, if a τ-tilting \mathbf{A}_{n}-module M does not have P_{1} as a direct summand, there must exist a τ-tilting \mathbf{A}_{n}-module $T=P_{1} \oplus U$ such that $M \leq \mu_{P_{1}}^{-}(T)$. Then, we look at $T=P_{1} \oplus U$. If $U e_{1}=0$, we have $\mu_{P_{1}}^{-}(T)=U$ by Definition-Theorem 2.1.4 so that $T / P_{1} \in Q_{n-1}\left(\mathbf{A}_{n}\right)$. If $U e_{1} \neq 0$, each indecomposable direct summand V of U satisfying $V e_{1} \neq 0$ must be uniserial and $\operatorname{top}(V)=S_{1}$ (i.e., V is a quotient module of P_{1}), so that we also have $\mu_{P_{1}}^{-}(T)=U$ by Definition-Theorem 2.1.4, and hence $T / P_{1} \in Q_{n-1}\left(\mathbf{A}_{n}\right)$. Thus, we conclude that any τ-tilting \mathbf{A}_{n}-module contains P_{1} as a direct summand.

Moreover, the map $\mathfrak{q}: Q_{n}\left(\mathbf{A}_{n}\right) \rightarrow Q_{n-1}\left(\mathbf{A}_{n}\right)$ defined by $\mathfrak{q}(T)=T / P_{1}$ is injective since T must have P_{1} as a direct summand. We show that \mathfrak{q} is also surjective. For any $U \in Q_{n-1}\left(\mathbf{A}_{n}\right)$, it is not difficult to check that $(\tau U) e_{1}=0$ and $\operatorname{Hom}_{\mathbf{A}_{n}}\left(P_{1}, \tau U\right)=0$. Then, we can find $P_{1} \oplus U \in Q_{n}\left(\mathbf{A}_{n}\right)$ satisfying $\mathfrak{q}\left(P_{1} \oplus U\right)=U$ for any $U \in Q_{n-1}\left(\mathbf{A}_{n}\right)$. Thus, we conclude that \mathfrak{q} is a bijection.

It is immediate that $a_{n}\left(\mathbf{A}_{n}\right)=a_{n-1}\left(\mathbf{A}_{n}\right)$. This can also be verified by the formula

$$
a_{s}\left(\mathbf{A}_{n}\right)=\frac{n-s+1}{n+1}\binom{n+s}{s},
$$

which is given by ONFR.
In the following, we divide the proof of Example 2.3.9 into several propositions. As a beginning, we find the number $\# \mathrm{~s} \tau$-tilt Λ_{4} by computing the left mutations starting with Λ_{4}. Since the number is small, we can do this by hand.

Example A.2.2. Let P_{i} be the indecomposable projective Λ_{4}-module at vertex i. Then,

$$
P_{1}={ }_{4}^{1}{ }_{3}^{3}, P_{2}={ }_{4}^{2}, P_{3}={ }_{4}^{3} \text { and } P_{4}=4 .
$$

By direct calculation, we find that (1) all τ-tilting Λ_{4}-modules are

${ }_{4}^{1} 3 \bigoplus_{4}^{2} \oplus{ }_{4}^{3} \oplus 4$	${ }_{4}^{1} 3 \bigoplus_{4}^{2} \oplus{ }_{4}^{3} \oplus{ }_{4}^{2}{ }_{4}$	${ }_{2}^{1} 3 \oplus{ }_{3}^{1} \oplus{ }_{2}^{1} \oplus{ }_{2}^{1} 3$	${ }_{2}^{1} 3 \oplus{ }_{2}^{1} \oplus{ }_{4}^{2} \oplus 2$	${ }_{2}^{1} 3 \oplus{ }_{3}^{1} \oplus{ }_{2}^{1} \oplus 4$
${ }_{4}^{1} 3 \oplus{ }_{4}^{2} \oplus{ }_{2}^{1} \oplus 4$		${ }_{2}^{1} 3 \oplus{ }_{3}^{1} \oplus 3 \oplus{ }_{2}^{1} 3$	${ }_{2}^{1}{ }_{4}^{1} \oplus{ }_{3}^{1} \oplus{ }_{4}^{3} \oplus 3$	${ }_{4}^{1} 3 \oplus 3 \oplus 2 \oplus{ }_{4}^{2}{ }_{4}$
${ }_{2}^{1} 3{ }_{4} \oplus{ }_{3}^{1} \oplus{ }_{4}^{3} \oplus 4$	${ }_{4}^{1} 3 \oplus 3 \oplus{ }_{4}^{3} \oplus{ }_{4}^{2}{ }^{3}$	${ }_{2}^{1} 3 \oplus 2 \bigoplus{ }_{2}^{1} \oplus{ }_{2}^{1} 3$	$1 \oplus{ }_{3}^{1} \oplus{ }_{2}^{1} \oplus 4$	${ }_{2}^{1} 3 \oplus 2 \oplus 3 \oplus{ }_{2}^{1} 3$

(2) all support τ-tilting Λ_{4}-modules with support-rank 3 are

${ }_{3}^{1} \oplus{ }_{2}^{1} \oplus{ }_{2}^{1}{ }_{3}$	$2 \bigoplus 3 \oplus{ }_{2}^{1} 3$	$3 \oplus{ }_{4}^{3} \bigoplus^{2}{ }_{4}^{3}$	${ }_{3}^{1} \oplus{ }_{4}^{3} \oplus 4$	${ }_{4}^{2} \oplus{ }_{2}^{1} \oplus 4$	$1 \bigoplus{ }_{3}^{1} \oplus 4$
${ }_{3}^{1} \oplus 3 \oplus{ }_{2}{ }^{1}{ }_{3}$	${ }_{4}^{2} \oplus{ }_{4}^{3} \oplus{ }_{4}^{2}{ }_{4}^{3}$	$3 \bigoplus 2 \bigoplus{ }_{4}^{2}{ }^{3}$	${ }_{4}^{2} \oplus{ }_{4}^{3} \oplus 4$	${ }_{4}^{2} \oplus{ }_{2}^{1} \oplus 2$	$1 \bigoplus{ }_{2}^{1} \oplus 4 ;$
$2 \bigoplus{ }_{2}^{1} \oplus{ }_{2}^{1}{ }_{3}$	${ }_{4}^{2} \oplus 2 \bigoplus{ }_{4}^{2} 3$	$1 \oplus{ }_{3}^{1} \oplus{ }_{2}^{1}$	${ }_{3}^{1} \oplus{ }_{4}^{3} \oplus 3$		

(3) all support τ-tilting Λ_{4}-modules with support-rank 2 are

Combining the above with $a_{0}\left(\Lambda_{4}\right)=1$ and $a_{1}\left(\Lambda_{4}\right)=4$, we conclude that $\# \mathbf{s} \tau$-tilt $\Lambda_{4}=46$.
Proposition A.2.3. For any $n \geqslant 4$ and $1 \leqslant s \leqslant n-3$, we have

$$
a_{s}\left(\Lambda_{n}\right)=a_{s}\left(\Lambda_{n-1}\right)+a_{s-1}\left(\Lambda_{n}\right)
$$

Proof. Let e_{i} be the idempotent of Λ_{n} at vertex i. For any support τ-tilting Λ_{n}-module M satisfying $M e_{n}=0$, it is obvious that M is a support τ-tilting Λ_{n-1}-module. Then, let $Q_{s}\left(\Lambda_{n} ; e_{n}\right)$ be the set of the support τ-tilting Λ_{n}-modules T with support-rank s and $T e_{n} \neq 0$. We show that there is a bijection

$$
\mathfrak{q}: Q_{s}\left(\Lambda_{n} ; e_{n}\right) \longrightarrow Q_{s-1}\left(\Lambda_{n}\right),
$$

and then, the statement follows from this bijection.
Let X be an indecomposable Λ_{n}-module with support-rank $t \leqslant n-3$ and $X e_{n} \neq 0$. Then, X is an indecomposable module over a path algebra of type \mathbb{A} and it corresponds to a root so that X is of the form

$$
\begin{gathered}
S_{n-t+1} \\
\vdots \\
S_{n-1} \\
S_{n}
\end{gathered} .
$$

In this case, we denote X by $[n-t+1, n]$.
Let $T \in Q_{s}\left(\Lambda_{n} ; e_{n}\right)$ and (T, P) the corresponding support τ-tilting pair. There exists at least one indecomposable direct summand of T, say X, which satisfies $X e_{n} \neq 0$ and we choose $X:=[n-t+1, n]$ of the largest possible length t.
(1) We show that $T e_{m}=0$ for any arrow $m \longrightarrow n-t+1$. In fact, if $t=s$, it is true since T is support-rank s. If $t \leqslant s-1$, the inequality $n-t+1 \geqslant 5$ makes m unique and $m=n-t$. By the maximality of X, the number of indecomposable direct summands X^{\prime} of T with $X^{\prime} e_{n} \neq 0$ is at most t and $t+|P|=t+n-s \leqslant n-1$. (Note that $X^{\prime} e_{n-t}=0$ is obvious.) We consider the remaining indecomposable direct summand Y of T satisfying $Y e_{n}=0$. Suppose that $Y e_{n-t} \neq 0$. It is enough to consider the following five types of Y :

\[

\]

where $4 \leqslant n-t \leqslant a \leqslant n-1$. One can check that $[n-t+1, a+1]$ is a submodule of τY for any type above. Then, $\operatorname{Hom}_{\Lambda_{n}}(X, \tau Y) \neq 0$ and it contradicts with $T \in Q_{s}\left(\Lambda_{n} ; e_{n}\right)$. Therefore, we must have $Y e_{n-t}=0$.
(2) According to (1), we can divide T into a direct sum $W \oplus Z$ such that the support of W is $\left\{e_{n-t+1}, \ldots, e_{n-1}, e_{n}\right\}$, the supports of W and Z are disjoint and the support of Z does not contain e_{m} with $m \longrightarrow n-t+1$. Then, we define

$$
\Lambda_{[n-t+1, n]}:=\Lambda_{n} /<e_{1}+e_{2}+\cdots+e_{n-t}>
$$

Since $T \in Q_{s}\left(\Lambda_{n} ; e_{n}\right)$ and the supports of W and Z are disjoint, W is actually a support τ-tilting Λ_{n}-module by repeatedly calculating the left mutations started at direct summands of Z. By Proposition 2.3.8, $|W|=t$ since the support-rank of W is t. Then, W becomes a τ-tilting $\Lambda_{[n-t+1, n]}$-module. We note that X is the unique indecomposable projective-injective $\Lambda_{[n-t+1, n]}$-module since $\Lambda_{[n-t+1, n]}$ is isomorphic to the path algebra \mathbf{A}_{t}. By Lemma A.2.1, the quotient module W / X is a support τ-tilting $\Lambda_{[n-t+1, n]}$-module with support-rank $t-1$.
(3) Based on the analysis in (1) and (2), we define $U:=T / X$ for any $T \in Q_{s}\left(\Lambda_{n} ; e_{n}\right)$. Since T is a support τ-tilting Λ_{n}-module with support-rank s, U is a support τ-tilting Λ_{n}-module with support-rank $s-1$ by $W / X \in Q_{t-1}\left(\Lambda_{[n-t+1, n]}\right)$ and the fact that the supports of W and Z are disjoint. Thus, we may define the map from $Q_{s}\left(\Lambda_{n} ; e_{n}\right)$ to $Q_{s-1}\left(\Lambda_{n}\right)$ by $\mathfrak{q}(T)=U$.

Next, we show that the map \mathfrak{q} defined above is a bijection. On the one hand, we know that \mathfrak{q} is an injection. By the analysis in (2), we may define $T_{1}:=Z_{1} \oplus X_{1} \oplus V_{1} \in Q_{s}\left(\Lambda_{n} ; e_{n}\right)$ and $T_{2}:=Z_{2} \oplus X_{2} \oplus V_{2} \in Q_{s}\left(\Lambda_{n} ; e_{n}\right)$ such that

- $X_{i}=\left[n-t_{i}+1, n\right]$ for $i=1,2$,
- the support of Z_{1} is included in $\left\{e_{1}, e_{2}, \ldots, e_{n-t_{1}-1}\right\}$,
- the support of Z_{2} is included in $\left\{e_{1}, e_{2}, \ldots, e_{n-t_{2}-1}\right\}$,
- the support of V_{1} is $\left\{e_{n-t_{1}+1}, e_{n-t_{1}+2}, \ldots, e_{i_{1}-1}, e_{i_{1}+1}, \ldots, e_{n}\right\}$ with exactly one $e_{i_{1}}$ satisfying $V_{1} e_{i_{1}}=0$ for $n-t_{1}+1 \leqslant i_{1} \leqslant n$,
- the support of V_{2} is $\left\{e_{n-t_{2}+1}, e_{n-t_{2}+2}, \ldots, e_{i_{2}-1}, e_{i_{2}+1}, \ldots, e_{n}\right\}$ with exactly one $e_{i_{2}}$ satisfying $V_{2} e_{i_{2}}=0$ for $n-t_{2}+1 \leqslant i_{2} \leqslant n$.

Obviously, $X_{1} \neq X_{2}$ if and only if $t_{1} \neq t_{2}$. If $X_{1}=X_{2}, T_{1} \neq T_{2}$ implies $Z_{1} \oplus V_{1} \neq Z_{2} \oplus V_{2}$. Then, we assume that $X_{1} \neq X_{2}$. If we list the idempotents by increasing the subscripts, the last two idempotents outside of the support of $Z_{1} \oplus V_{1}$ must be $\left\{e_{n-t_{1}}, e_{i_{1}}\right\}$ and the last two idempotents outside of the support of $Z_{2} \oplus V_{2}$ must be $\left\{e_{n-t_{2}}, e_{i_{2}}\right\}$. Since $t_{1} \neq t_{2}$, we have $e_{n-t_{1}} \neq e_{n-t_{2}}$ so that the supports of $Z_{1} \oplus V_{1}$ and $Z_{2} \oplus V_{2}$ are different. Thus, we conclude that $\mathfrak{q}\left(T_{1}\right) \neq \mathfrak{q}\left(T_{2}\right)$ if $T_{1} \neq T_{2} \in Q_{s}\left(\Lambda_{n} ; e_{n}\right)$.

On the other hand, \mathfrak{q} is a surjection. We assume that $U \in Q_{s-1}\left(\Lambda_{n}\right)$. Since $s-1 \leqslant n-4$, there are at least 4 idempotents of Λ_{n} outside of the support of U.

- If there are exactly 4 idempotents e_{1}, e_{2}, e_{3} and e_{i} with $4 \leqslant i \leqslant n$ outside of the support of U, then $s=n-3$ and U becomes a support τ-tilting $\Lambda_{[4, n]}$-module with support-rank $n-4$. Let $P:=[4, n]$ be the indecomposable projective $\Lambda_{[4, n]^{-}}$ module at vertex 4. Since $\Lambda_{[4, n]}$ is isomorphic to the path algebra \mathbf{A}_{n-3}, we have $T:=P \oplus U \in Q_{n-3}\left(\Lambda_{n} ; e_{n}\right)$ by Lemma A.2.1, and T maps to U.
- Otherwise, there are at least two idempotents in $\left\{e_{4}, e_{5}, \ldots, e_{n}\right\}$ outside of the support of U. Let $j>i>\cdots \geqslant 4$ be the first two numbers in decreasing order of such subscripts. Then, e_{i+1} does not appear in the support of τU, and we can find an indecomposable projective Λ_{n}-module $P:=[i+1, n]$ such that $\operatorname{Hom}_{\Lambda_{n}}(P, \tau U)=0$. Hence, $T:=P \oplus U \in Q_{s}\left(\Lambda_{n} ; e_{n}\right)$. In fact, $T e_{j} \neq 0$ and $T e_{j^{\prime}}=0$ for any $j^{\prime} \neq j$ satisfying $U e_{j^{\prime}}=0$. Then, T maps to U.

Therefore, \mathfrak{q} is a surjection.
We denote by $[2,4, \ldots, n]$ (resp., $[3,4, \ldots, n]$) the indecomposable projective Λ_{n}-module at vertex 2 (resp., 3).

Proposition A.2.4. For any $n \geqslant 4$, we have

$$
a_{n-2}\left(\Lambda_{n}\right)=a_{n-2}\left(\Lambda_{n-1}\right)+a_{n-3}\left(\Lambda_{n}\right)+a_{n-3}\left(\mathbf{A}_{n-3}\right) .
$$

Proof. Let e_{i} be the idempotent of Λ_{n} at vertex i. For any support τ-tilting Λ_{n}-module M satisfying $M e_{n}=0$, it is obvious that M is a support τ-tilting Λ_{n-1}-module. Then, the number of such modules with support-rank $n-2$ is $a_{n-2}\left(\Lambda_{n-1}\right)$.

Let $Q_{n-2}\left(\Lambda_{n} ; e_{n}\right)$ be the set of support τ-tilting Λ_{n}-modules T with support-rank $n-2$ and $T e_{n} \neq 0$. For any $T \in Q_{n-2}\left(\Lambda_{n} ; e_{n}\right)$, we denote it by $T=X \oplus U$ with an indecomposable direct summand X satisfying $X e_{n} \neq 0$. We may set $X:=[n-t+1, n]$ of the largest possible length t, while $X=[2,4, \ldots, n]$ is also allowed if $t=n-2$. We show that $\mu_{X}^{-}(T)=U$ and therefore, $U \in Q_{n-3}\left(\Lambda_{n}\right)$. Then, we can define a map \mathfrak{q} from $Q_{n-2}\left(\Lambda_{n} ; e_{n}\right)$ to $Q_{n-3}\left(\Lambda_{n}\right)$ by $\mathfrak{q}(T)=U$.

- If $t \leqslant n-3$, this is similar to the situation in the proof of Proposition A.2.3. Thus, $T e_{m}=0$ for any arrow $m \longrightarrow n-t+1$ such that $T=X \oplus V \oplus Z$, where $X \oplus V$ is a τ-tilting $\Lambda_{[n-t+1, n]}$-module with the unique indecomposable projective-injective $\Lambda_{[n-t+1, n]}$-module X, the supports of $X \oplus V$ and Z are disjoint and the support of Z does not contain e_{m} with $m \longrightarrow n-t+1$. By Lemma A.2.1, we have $\mu_{X}^{-}(T)=V \oplus Z$. In this case, $\mathfrak{q}\left(T_{1}\right) \neq \mathfrak{q}\left(T_{2}\right)$ if $T_{1} \neq T_{2} \in Q_{n-2}\left(\Lambda_{n} ; e_{n}\right)$.
- Let $t=n-2$, the support of X is either $\left\{e_{2}, e_{4}, \ldots, e_{n}\right\}$ or $\left\{e_{3}, e_{4}, \ldots, e_{n}\right\}$ such that X is uniquely determined (since the support of X cannot contain all the idempotents $\left.\left\{e_{2}, e_{3}, e_{4}, \ldots, e_{n}\right\}\right)$. Then, $T e_{1}=0$ is obvious and $\mu_{X}^{-}(T)=U$ is also true. In fact, let $T:=X \oplus U$ and $X:=[2,4, \ldots, n]$. The condition $T e_{1}=T e_{3}=0$ makes T to be a τ-tilting \mathbf{A}_{n-2}-module and makes X to be the unique indecomposable projective-injective \mathbf{A}_{n-2}-module. By Lemma A.2.1, we deduce that $\mu_{X}^{-}(T)=U$. Similarly, one can observe the fact $\mu_{X}^{-}(T)=U$ for $X=[3,4, \ldots, n]$.

Let $X_{1}:=[2,4, \ldots, n]$ and $X_{2}:=[3,4, \ldots, n]$. We observe that the map \mathfrak{q} defined above is not an injection because $\mathfrak{q}\left(X_{1} \oplus U\right)=\mathfrak{q}\left(X_{2} \oplus U\right)=U$ whenever U is a τ-tilting $\Lambda_{[4, n]}$-module, which appears in the case $t=n-2$. Also, it will be useful to mention that for any $T \in Q_{n-2}\left(\Lambda_{n} ; e_{n}\right)$, if there exists an idempotent $e_{i} \in\left\{e_{4}, e_{5}, \ldots, e_{n}\right\}$ satisfying $T e_{i}=0$, then $t \leqslant n-i \leqslant n-4$.

Next, we show that the map $\mathfrak{q}: Q_{n-2}\left(\Lambda_{n} ; e_{n}\right) \rightarrow Q_{n-3}\left(\Lambda_{n}\right)$ is a surjection. For any $U \in Q_{n-3}\left(\Lambda_{n}\right)$, there exist exactly three idempotents of Λ_{n} outside of the support of U.

- Suppose that there are at least two idempotents in $\left\{e_{4}, e_{5}, \ldots, e_{n}\right\}$ outside of the support of U. Let $j>i \geqslant 4$ (or $j>i>k \geqslant 4$ if k exists) be the order of such numbers. Then, e_{i+1} does not appear in the support of τU, so that $\operatorname{Hom}_{\Lambda_{n}}(P, \tau U)=0$ with the indecomposable projective Λ_{n}-module $P:=[i+1, n]$. Hence, $P \oplus U \in Q_{n-2}\left(\Lambda_{n} ; e_{n}\right)$ maps to U.

Note that for any Y satisfying $Y \oplus U \in Q_{n-2}\left(\Lambda_{n} ; e_{n}\right)$ and $\mathfrak{q}(Y \oplus U)=U$, the support-rank of $Y \oplus U$ is the support-rank of U plus 1 . Then, there always exists an idempotent $e_{k} \in\left\{e_{4}, e_{5}, \ldots, e_{n}\right\}$ satisfying $(Y \oplus U) e_{k}=0$, so that $Y \oplus U$ is included in the case $t \leqslant n-4$. By the injectivity of \mathfrak{q} in the case $t \leqslant n-3$, we conclude that $P \oplus U \in Q_{n-2}\left(\Lambda_{n} ; e_{n}\right)$ is uniquely determined in this case.

- Suppose that there is exactly one idempotent e_{i} in $\left\{e_{4}, e_{5}, \ldots, e_{n}\right\}$ outside of the support of U. This is equivalent to saying that there are exactly two idempotents of e_{1}, e_{2}, e_{3} outside of the support of U.

If $U e_{1} \neq 0, U e_{2}=0, U e_{3}=0$, then $U=S_{1} \oplus V$, where V is a support τ-tilting $\Lambda_{[4, n]}$-module with support-rank $n-4$. We observe that $\left(U, P_{2} \oplus P_{3}\right)$ is an almost complete support τ-tilting pair, so that it has two completions and one of which is $\left(U, P_{2} \oplus P_{3} \oplus P_{i}\right)$. Since $U e_{j} \neq 0$ for any $i \neq j \geqslant 4,\left(U, P_{2} \oplus P_{3} \oplus P_{j}\right)$ cannot be a support τ-tilting pair and then, the other completion must be of the form
$\left(U \oplus Y, P_{2} \oplus P_{3}\right)$. In particular, $Y e_{2}=Y e_{3}=0$ holds. Since Y is indecomposable and cannot be $S_{1}, Y e_{1}=0$ also holds. Note that the support-rank of $Y \oplus U$ is the supportrank of U plus 1, we must have $Y e_{i} \neq 0$. Then, $Y \oplus V$ is a τ-tilting $\Lambda_{[4, n]}$-module. Since V is support-rank $n-4$, it cannot have $[4, n]$ as a direct summand. By Lemma A.2.1, $Y=[4, n]$ is unique and $Y \oplus U \in Q_{n-2}\left(\Lambda_{n} ; e_{n}\right)$. Moreover, $\mathfrak{q}(Y \oplus U)=U$.

If $U e_{1}=0, U e_{2} \neq 0, U e_{3}=0$, similar to the above case, we can find a Y satisfying $Y e_{1}=Y e_{3}=0$ such that $Y \oplus U \in Q_{n-2}\left(\Lambda_{n} ; e_{n}\right)$ maps to U. Then, U can be considered as a support τ-tilting \mathbf{A}_{n-2}-module with support-rank $n-3$ as well as $Y \oplus U$ can be considered as a τ-tilting \mathbf{A}_{n-2}-module. By Lemma A.2.1, Y is unique and it must be X_{1}.

If $U e_{1}=0, U e_{2}=0, U e_{3} \neq 0$, similar to above, $X_{2} \oplus U \in Q_{n-2}\left(\Lambda_{n} ; e_{n}\right)$ maps to U and X_{2} is uniquely determined by Lemma A.2.1.

- Suppose that e_{1}, e_{2}, e_{3} are outside of the support of U. Then, U is actually a τ-tilting $\Lambda_{[4, n]}$-module and $[4, n]$ must be an indecomposable (projective) direct summand of U following Lemma A.2.1. Then, $\operatorname{Hom}_{\Lambda_{n}}\left(X_{i}, \tau U\right)=0$ for $i=1,2$ implies that $X_{1} \oplus U, X_{2} \oplus U \in Q_{n-2}\left(\Lambda_{n} ; e_{n}\right)$ and both of them are mapped to U.

We show that X_{1} and X_{2} are the only possible cases. Assume that $Y \oplus U \in$ $Q_{n-2}\left(\Lambda_{n} ; e_{n}\right)$ maps to U. Then, only one of $Y e_{1}, Y e_{2}, Y e_{3}$ is not zero. If $Y e_{1} \neq 0$, Y must be S_{1} since Y is indecomposable and $Y e_{2}=Y e_{3}=0$. However, this contradicts with the fact $Y e_{n} \neq 0$ deduced by $\mathfrak{q}(Y \oplus U)=U$. Thus, we have either $Y e_{1}=Y e_{2}=0, Y e_{3} \neq 0, Y e_{n} \neq 0$ or $Y e_{1}=Y e_{3}=0, Y e_{2} \neq 0, Y e_{n} \neq 0$, so that $Y=X_{1}$ or X_{2}.

Now, we found that the map $\mathfrak{q}: Q_{n-2}\left(\Lambda_{n} ; e_{n}\right) \rightarrow Q_{n-3}\left(\Lambda_{n}\right)$ is indeed a surjection. If one wants to use this surjection to count the number of modules in $Q_{n-2}\left(\Lambda_{n} ; e_{n}\right)$, one should note that both $X_{1} \oplus U$ and $X_{2} \oplus U$ are mapped to U whenever U is a τ-tilting $\Lambda_{[4, n]}$-module, and it is the only part that needs to be double calculated. These are exactly the $a_{n-3}\left(\Lambda_{[4, n]}\right)=a_{n-3}\left(\mathbf{A}_{n-3}\right)$ pairs of modules in $Q_{n-2}\left(\Lambda_{n} ; e_{n}\right)$. Therefore, the number of modules in $Q_{n-2}\left(\Lambda_{n} ; e_{n}\right)$ is $a_{n-3}\left(\Lambda_{n}\right)+a_{n-3}\left(\mathbf{A}_{n-3}\right)$.

We define $\mathbb{A}_{2}^{1}:=\mathbf{A}_{2}$ and $\mathbb{A}_{n}^{1}:=K Q /\langle\alpha \beta\rangle$ for any $n \geqslant 3$, where

$$
Q: 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3 \longrightarrow \cdots \longrightarrow n-1 \longrightarrow n .
$$

Proposition A.2.5. Let $n \geqslant 4$, we have
(1) $a_{s}\left(\mathbb{A}_{n}^{1}\right)=a_{s}\left(\mathbb{A}_{n-1}^{1}\right)+a_{s-1}\left(\mathbb{A}_{n}^{1}\right)$ for any $1 \leqslant s \leqslant n-2$.
(2) $a_{n-1}\left(\mathbb{A}_{n}^{1}\right)=a_{n-1}\left(\mathbb{A}_{n-1}^{1}\right)+a_{n-1}\left(\mathbf{A}_{n-1}\right)+a_{n-2}\left(\mathbf{A}_{n-2}\right)+\sum_{i=3}^{n-1} a_{i-1}\left(\mathbb{A}_{i-1}^{1}\right) \cdot a_{n-i}\left(\mathbf{A}_{n-i}\right)$.
(3) $a_{n}\left(\mathbb{A}_{n}^{1}\right)=a_{n-1}\left(\mathbf{A}_{n-1}\right)+a_{n-2}\left(\mathbf{A}_{n-2}\right)$.

Proof. (1) The proof is similar to the proof of Proposition A.2.3. We omit the details.
(2) Let $T \in Q_{n-1}\left(\mathbb{A}_{n}^{1}\right)$. There exists exactly one idempotent e_{i} such that $T e_{i}=0$. If $i=1, T$ becomes a τ-tilting \mathbf{A}_{n-1}-module. If $i=2$, we can divide T into a direct sum $T_{1} \oplus T_{2}$ such that T_{1} is the unique τ-tilting \mathbf{A}_{1}-module and T_{2} is a τ-tilting \mathbf{A}_{n-2}-module. If $3 \leqslant i \leqslant n-1$, we can divide T into a direct sum $T_{1} \oplus T_{2}$ such that T_{1} is a τ-tilting \mathbb{A}_{i-1}^{1}-module and T_{2} is a τ-tilting \mathbf{A}_{n-i}-module. If $i=n, T$ is a τ-tilting \mathbb{A}_{n-1}^{1}-module. Hence, we get the formula.
(3) Let $T \in Q_{n}\left(\mathbb{A}_{n}^{1}\right)$. Similar to the proof of Lemma A.2.1, we find that T always contains $\frac{1}{2}$ as a direct summand. If $T=\frac{1}{2} \oplus U$ with $U e_{1}=0, U$ becomes a τ-tilting \mathbf{A}_{n-1}-module. If $T=\frac{1}{2} \oplus U$ with $U e_{1} \neq 0$, one may check that $U=1 \oplus V$ with $V e_{1}=0$. Since $\tau(1)=S_{2}$ and U is τ-rigid, we have $V e_{2}=0$. Thus, V is a τ-tilting \mathbf{A}_{n-2}-module.

By combining the above proposition and $a_{n}\left(\mathbf{A}_{n}\right)=\frac{1}{n+1}\binom{2 n}{n}$, we have
Corollary A.2.6. $a_{n}\left(\mathbb{A}_{n}^{1}\right)=\frac{1}{n}\binom{2 n-2}{n-1}+\frac{1}{n-1}\binom{2 n-4}{n-2}$ is the sequence $\underline{A 005807}$ in [Sl]].
Let \mathbf{D}_{n} be the path algebra presented by

We recall $a_{n}\left(\mathbf{D}_{n}\right)=\frac{3 n-4}{2 n-2}\binom{2 n-2}{n-2}$ from ONFR.
Proposition A.2.7. For any $n \geqslant 5$, we have

$$
a_{n-1}\left(\Lambda_{n}\right)=a_{n-1}\left(\Lambda_{n-1}\right)+a_{n-1}\left(\mathbf{D}_{n-1}\right)+2 a_{n-1}\left(\mathbb{A}_{n-1}^{1}\right)+\sum_{i=4}^{n-1} a_{i-1}\left(\Lambda_{i-1}\right) \cdot a_{n-i}\left(\mathbf{A}_{n-i}\right)
$$

Proof. Let $T \in Q_{n-1}\left(\Lambda_{n}\right)$. There is exactly one idempotent e_{i} such that $T e_{i}=0$. If $i=1$, T becomes a τ-tilting \mathbf{D}_{n-1}-module. If $i=2$ or 3 , then $\beta \nu=0$ or $\alpha \mu=0$, and T becomes a τ-tilting \mathbb{A}_{n-1}^{1}-module. If $4 \leqslant i \leqslant n-1$, we can divide T into a direct sum $T_{1} \oplus T_{2}$ such that T_{1} is a τ-tilting Λ_{i-1}-module and T_{2} is a τ-tilting \mathbf{A}_{n-i}-module. If $i=n, T$ is a τ-tilting Λ_{n-1}-module. Hence, we deduce the formula.

Proposition A.2.8. For any $n \geqslant 4$, we have

$$
a_{n}\left(\Lambda_{n}\right)=a_{n-1}\left(\Lambda_{n}\right)-a_{n-3}\left(\mathbf{A}_{n-3}\right) .
$$

Proof. Let P_{i} be the indecomposable projective Λ_{n}-module at vertex i. We explain the relation between $Q_{n}\left(\Lambda_{n}\right)$ and $Q_{n-1}\left(\Lambda_{n}\right)$ as follows.
(1) We show that a τ-tilting Λ_{n}-module either has P_{1} as a direct summand or is of form $1 \oplus \frac{1}{2} \oplus \frac{1}{3} \oplus V$ with V to be a τ-tilting $\Lambda_{[4, n]}$-module. By the poset structure on $\mathbf{s} \tau$-tilt Λ_{n}, any τ-tilting Λ_{n}-module $M \nsucceq \Lambda_{n}$ satisfies $M \leq \mu_{P_{i}}^{-}\left(\Lambda_{n}\right)$ for some $1 \leqslant i \leqslant n$. Since $\mu_{P_{1}}^{-}\left(\Lambda_{n}\right)$ is not τ-tilting and all $\mu_{P_{i}}^{-}\left(\Lambda_{n}\right)$ with $i \geqslant 2$ have P_{1} as a direct summand, if M does not have P_{1} as a direct summand, then there must exist a τ-tilting Λ_{n}-module $T:=P_{1} \oplus U$ such that $M \leq \mu_{P_{1}}^{-}(T)$. Immediately, we have

Case (a). If $T=P_{1} \oplus U$ with $U e_{1}=0$, then $\mu_{P_{1}}^{-}(T)=U$ by Definition-Theorem 2.1.4 and $U \in Q_{n-1}\left(\Lambda_{n}\right)$ by Proposition 2.3.8.

Suppose that $U e_{1} \neq 0$. We remark that U does not have S_{1} as a direct summand since $\operatorname{Hom}_{\Lambda_{n}}\left(P_{1}, \tau S_{1}\right) \neq 0$. We define

$$
M_{a}:=\begin{gathered}
{ }_{2}^{1}{ }_{3}^{3} \\
\vdots \\
\vdots
\end{gathered}
$$

with $4 \leqslant a \leqslant n-1$. Then, U has at least one of $\frac{1}{2}, \frac{1}{3},{ }_{2}{ }_{3}$ and M_{a} as a direct summand, because these modules are τ-rigid and $U e_{1} \neq 0$. In particular, it is worth mentioning that the unique non-zero morphism $f: P_{1} \rightarrow X$ for any $X \in\left\{\frac{1}{2}, \frac{1}{3},{ }_{2}{ }_{3}, M_{a}\right\}$, is actually the projective cover of X and coker $f=0$.
(a1) If $U=\frac{1}{2} \oplus V$ with $V e_{1}=0$, we have $\mu_{P_{1}}^{-}(T)=U$ by substituting coker $f=0$ into Definition-Theorem 2.1.4 and hence, $U \in Q_{n-1}\left(\Lambda_{n}\right)$. Since $\tau\left(\frac{1}{2}\right)=S_{3}$, we have $S_{3} \nsubseteq$ top V so that $V e_{3}=0$. This implies that $U e_{3}=0$ and $U e_{i} \neq 0$ for any $i \neq 3$.
(a2) If $U=\frac{1}{3} \oplus V$ with $V e_{1}=0$, we also have $\mu_{P_{1}}^{-}(T)=U$ and $U \in Q_{n-1}\left(\Lambda_{n}\right)$. Since $\tau\left(\frac{1}{3}\right)=S_{2}$, we have $U e_{2}=0$ and $U e_{i} \neq 0$ for any $i \neq 2$.
(a3) If U has exactly one of ${ }_{2}{ }_{3}$ and M_{a} as a direct summand, we have $\mu_{P_{1}}^{-}(T)=U$ by substituting coker $f=0$ into Definition-Theorem 2.1.4 and hence, $U \in Q_{n-1}\left(\Lambda_{n}\right)$. This implies that $U e_{i}=0$ for exactly one i with $4 \leqslant i \leqslant n$.
(a4) If U has two of $\frac{1}{2}, \frac{1}{3}, 2{ }_{3}$ and M_{a} as direct summands and one of the direct summands is ${ }_{2}{ }_{3}^{1}$ or M_{a}, we also have $\mu_{P_{1}}^{-}(T)=U$ since there exist epimorphisms from ${ }_{2}{ }_{3}{ }_{3}$ or M_{a} to $\frac{1}{2}$ and $\frac{1}{3}$. Then, $U \in Q_{n-1}\left(\Lambda_{n}\right)$. Since we can make sure that $U e_{2} \neq 0$ and $U e_{3} \neq 0$, we have $U e_{i}=0$ for exactly one i with $4 \leqslant i \leqslant n$.
(a5) If U has more than two of $\frac{1}{2}, \frac{1}{3},{ }_{2}{ }_{3}$ and M_{a} as direct summands, it must have ${ }_{2}{ }^{1}{ }_{3}$ or M_{a} as a direct summand. Then, similar to the above, we have $\mu_{P_{1}}^{-}(T)=U$ and $U \in Q_{n-1}\left(\Lambda_{n}\right)$. This also implies that $U e_{i}=0$ for exactly one i with $4 \leqslant i \leqslant n$.

Then, it remains to consider
Case (b). If $T=P_{1} \oplus \frac{1}{2} \oplus \frac{1}{3} \oplus V$ with $V e_{1}=0$, then $V e_{2}=V e_{3}=0$, so that V becomes a τ-tilting $\Lambda_{[4, n]}$-module. In fact, if $V e_{2} \neq 0$, it implies $S_{2} \subseteq$ top V so that $\operatorname{Hom}_{\Lambda_{n}}\left(V, S_{2}\right) \neq 0$. Then, $\tau\left(\frac{1}{3}\right)=S_{2}$ implies that $V e_{2}$ must be zero. Similarly, $\tau\left(\frac{1}{2}\right)=S_{3}$ makes $V e_{3}$ to be zero. Then, we have $\mu_{P_{1}}^{-}(T)=1 \oplus \frac{1}{2} \oplus \frac{1}{3} \oplus V$ by simple observation.

Now, we can claim that if a τ-tilting Λ_{n}-module M does not have P_{1} as a direct summand, $M \leq T^{\prime}:=1 \oplus \frac{1}{2} \oplus \frac{1}{3} \oplus V$ with a τ-tilting $\Lambda_{[4, n]}$-module V. Then, we observe that the left mutations of T^{\prime} with respect to $\frac{1}{2}$ and $\frac{1}{3}$ are not τ-tilting, and the left mutation of T^{\prime} with respect to one of direct summands of V is equivalent to that of a τ-tilting $\Lambda_{[4, n]}$-module V. Therefore, $1 \oplus \frac{1}{2} \oplus \frac{1}{3}$ must remain in M as a direct summand.

Finally, we conclude that if a τ-tilting Λ_{n}-module M does not have P_{1} as a direct summand, it is of form $1 \oplus \frac{1}{2} \oplus \frac{1}{3} \oplus V$ with a τ-tilting $\Lambda_{[4, n]}$-module V. Moreover, if a τ-tilting Λ_{n}-module T has P_{1} as a direct summand, then $T / P_{1} \in Q_{n-1}\left(\Lambda_{n}\right)$ if and only if
$T \not 千 P_{1} \oplus{ }_{2}^{1} \oplus \frac{1}{3} \oplus V$ with a τ-tilting $\Lambda_{[4, n]}$-module V. (This implies that T / P_{1} is not always included in $Q_{n-1}\left(\Lambda_{n}\right)$. This is also the reason why we distinguish the following set \mathcal{S}.)
(2) We may construct a map \mathfrak{q} from $Q_{n-1}\left(\Lambda_{n}\right)$ to $Q_{n}\left(\Lambda_{n}\right) \backslash \mathcal{S}$, where

$$
\mathcal{S}:=\left\{\left.P_{1} \oplus \frac{1}{2} \oplus \frac{1}{3} \oplus V \right\rvert\, V \text { is a } \tau \text {-tilting } \Lambda_{[4, n]} \text {-module }\right\} .
$$

Let $U \in Q_{n-1}\left(\Lambda_{n}\right)$, it is obvious that U does not have P_{1} as a direct summand since P_{1} is sincere. We first consider the case that U has S_{1} as a direct summand. Since $\tau(1)={ }_{2}{ }_{3}$, we know that U does not have one of ${ }_{2}{ }^{1}{ }_{3}, M_{a}$, the indecomposable module N_{2} with top $N_{2}=S_{2}$ and the indecomposable module N_{3} with top $N_{3}=S_{3}$ as a direct summand. Since $U \in Q_{n-1}\left(\Lambda_{n}\right)$, there exists exactly one idempotent e_{i} with $i \neq 1$ satisfying $U e_{i}=0$.
(i) If $i=2$, the only possible direct summand Y of U satisfying $Y e_{3} \neq 0$ is $\frac{1}{3}$ and the remaining direct summands give a τ-tilting $\Lambda_{[4, n]}$-module V, so that $U=1 \oplus \frac{1}{3} \oplus V$. In this subcase, \mathfrak{q} is defined by mapping U to $1 \oplus \frac{1}{2} \oplus \frac{1}{3} \oplus V$. To observe that the latter one is included in $Q_{n}\left(\Lambda_{n}\right) \backslash \mathcal{S}$, we have $\operatorname{Hom}_{\Lambda_{n}}\left(\frac{1}{2} \oplus U, \tau\left(\frac{1}{2} \oplus U\right)\right)=0$ since $\tau\left(\frac{1}{2}\right)=3$ and $\tau\left(\frac{1}{3}\right)=2$. Moreover, it is easy to check that \mathfrak{q} in this subcase is a bijection.

If $i=3, U=1 \oplus \frac{1}{2} \oplus V$ with a τ-tilting $\Lambda_{[4, n]}$-module V. Similarly, \mathfrak{q} is defined by mapping U to $1 \oplus \frac{1}{2} \oplus \frac{1}{3} \oplus V \in Q_{n}\left(\Lambda_{n}\right) \backslash \mathcal{S}$, and \mathfrak{q} in this subcase is also a bijection. Note that the number of U in the cases of $i=2,3$ is $2 a_{n-3}\left(\Lambda_{[4, n]}\right)=2 a_{n-3}\left(\mathbf{A}_{n-3}\right)$.
(ii) If $i \geqslant 4$, the conditions $U e_{2} \neq 0$ and $U e_{3} \neq 0$ must imply that $U=1 \oplus \frac{1}{2} \oplus \frac{1}{3} \oplus Z$ with $Z e_{1}=Z e_{2}=Z e_{3}=0$ and $Z \in Q_{n-4}\left(\Lambda_{[4, n]}\right)$. We may regard Z as a support τ-tilting \mathbf{A}_{n-3}-module with support-rank $n-4$. By Lemma A.2.1, Z is the left mutation of τ-tilting $\Lambda_{[4, n]}$-module $V:=P \oplus Z$ with $P=[4, n]$. Then, $1 \oplus \frac{1}{2} \oplus \frac{1}{3} \oplus V \in Q_{n}\left(\Lambda_{n}\right) \backslash \mathcal{S}$ is obvious. In this subcase, \mathfrak{q} is defined by mapping U to $1 \oplus \frac{1}{2} \oplus \frac{1}{3} \oplus V$ and it is a bijection. Besides, the number of U in this subcase is $a_{n-4}\left(\Lambda_{[4, n]}\right)=a_{n-4}\left(\mathbf{A}_{n-3}\right)$.

Similar to the situation in Proposition A.2.4, the map \mathfrak{q} defined in the case where U has S_{1} as a direct summand is no longer a bijection, but a surjection. If we count the number of modules in $Q_{n}\left(\Lambda_{n}\right) \backslash \mathcal{S}$ in this case, there should be $a_{n-3}\left(\mathbf{A}_{n-3}\right)+a_{n-4}\left(\mathbf{A}_{n-3}\right)$ overlaps.

Next, we consider $U \in Q_{n-1}\left(\Lambda_{n}\right)$ such that $U e_{1} \neq 0$ and U does not have S_{1} as a direct summand. There also exists exactly one idempotent e_{i} with $i \neq 1$ satisfying $U e_{i}=0$.
(iii) If $i=2$, the only possible direct summand Y of U satisfying $Y e_{1} \neq 0$ is $\frac{1}{3}$ so that $U=\frac{1}{3} \oplus V$ with $V e_{1}=0$. Then, $P_{1} \oplus U \in Q_{n}\left(\Lambda_{n}\right) \backslash \mathcal{S}$ is obvious and this is the only one possible case. In fact, by the analysis in (1) before, a completion of $\frac{1}{3} \oplus V$ to a τ-tilting Λ_{n}-module which does not belong to \mathcal{S} is either of form $P_{1} \oplus \frac{1}{3} \oplus W$ with $W e_{1}=W e_{2}=0$ or of form ${ }_{2}^{1} \oplus \frac{1}{3} \oplus 1 \oplus W$ with $W e_{1}=W e_{2}=W e_{3}=0$, but the latter one is excluded if we restrict $V e_{1}=0$. Therefore, \mathfrak{q} in this subcase is defined by mapping U to $P_{1} \oplus U$ and it is a bijection to the case (a2).

Similarly, if $i=3$, we have $U={ }_{2}^{1} \oplus V$ with $V e_{1}=0$ and $P_{1} \oplus U \in Q_{n}\left(\Lambda_{n}\right) \backslash \mathcal{S}$. Hence, \mathfrak{q} is also defined by mapping U to $P_{1} \oplus U$ and it is a bijection to the case (a1).
(iv) Suppose $i \geqslant 4$. Then, U has at least one of $\frac{1}{2}, \frac{1}{3}, 2{ }_{2}{ }_{3}$ and M_{a} as a direct summand.

- If U has exactly one of ${ }_{2}^{1}$ and ${ }_{3}^{1}$ as a direct summand, say, $U={ }_{2}^{1} \oplus V$ with $V e_{1}=0$, $U e_{3} \neq 0$ implies $S_{3} \subseteq$ top V. Then, $\tau\left(\frac{1}{2}\right)=S_{3}$ indicates $\operatorname{Hom}_{\Lambda_{n}}\left(V, \tau\left(\frac{1}{2}\right)\right) \neq 0$, contradicting with the assumption that U is a τ-rigid module. Also, one can get a contradiction for $U=\frac{1}{3} \oplus V$ with $V e_{1}=0$.
- If $\frac{1}{2} \oplus \frac{1}{3}$ is a direct summand of U such that $U=\frac{1}{2} \oplus \frac{1}{3} \oplus V$ with $V e_{1}=0$, then $V e_{2}=V e_{3}=0$ by the similar analysis with Case (b) in (1). This implies that V is a support τ-tilting $\Lambda_{[4, n]}$-module with support-rank $n-4$. However, $|U|=2+n-4=n-2<n-1$, contradicting with $U \in Q_{n-1}\left(\Lambda_{n}\right)$.
- Otherwise, U must have one of ${ }_{2}{ }_{3}$ and M_{a} as a direct summand, so that $P_{1} \oplus U \in Q_{n}\left(\Lambda_{n}\right) \backslash \mathcal{S}$ is well-defined by the analysis in (1). In this subcase, \mathfrak{q} is defined by mapping U to $P_{1} \oplus U$ and it is a bijection to (a3), (a4) and (a5).

We conclude that the map \mathfrak{q} in this case is a bijection.
Lastly, it suffices to consider the following case.
(v) If $U e_{1}=0, P_{1} \oplus U \in Q_{n}\left(\Lambda_{n}\right) \backslash \mathcal{S}$ is well-defined. In fact, it follows from $\operatorname{Hom}_{\Lambda_{n}}\left(P_{1}, \tau U\right)=$ 0 . Thus, \mathfrak{q} in this case is also defined by mapping U to $P_{1} \oplus U$ and it is a bijection. This corresponds to the Case (a) in (1).

Now, we have found that $\mathfrak{q}: Q_{n-1}\left(\Lambda_{n}\right) \rightarrow Q_{n}\left(\Lambda_{n}\right) \backslash \mathcal{S}$ is a surjection, which is similar to the situation in Proposition A.2.4. In particular, the reason why \mathfrak{q} is not an injection is explained in cases (i) and (ii). Then, the number of modules in $Q_{n}\left(\Lambda_{n}\right) \backslash \mathcal{S}$ is

$$
a_{n-1}\left(\Lambda_{n}\right)-\#\left\{\left.1 \oplus \frac{1}{3} \oplus V \right\rvert\, V \in Q_{n-3}\left(\Lambda_{[4, n]}\right)\right\}-\#\left\{\left.1 \oplus \frac{1}{2} \oplus \frac{1}{3} \oplus Z \right\rvert\, Z \in Q_{n-4}\left(\Lambda_{[4, n]}\right)\right\} .
$$

On the other hand, the number of modules in \mathcal{S} is $a_{n-3}\left(\Lambda_{[4, n]}\right)=a_{n-3}\left(\mathbf{A}_{n-3}\right)$. Hence, we conclude that

$$
\begin{aligned}
a_{n}\left(\Lambda_{n}\right) & =\#\left(Q_{n}\left(\Lambda_{n}\right) \backslash \mathcal{S}\right)+\# \mathcal{S} \\
& =a_{n-1}\left(\Lambda_{n}\right)-a_{n-3}\left(\mathbf{A}_{n-3}\right)-a_{n-4}\left(\mathbf{A}_{n-3}\right)+a_{n-3}\left(\mathbf{A}_{n-3}\right) .
\end{aligned}
$$

Note that $a_{n-4}\left(\mathbf{A}_{n-3}\right)=a_{n-3}\left(\mathbf{A}_{n-3}\right)$ by Lemma A.2.1. Then, the statement follows.

A. 3 Supporting materials of Example 2.3 .10

We recall the indecomposable projective A-modules P_{i} as follows,

$$
P_{1}=\frac{1}{3}, P_{2}=\frac{e_{3}^{3}}{\frac{1}{3}}, P_{3}=\frac{1_{3}^{3}}{2}{ }_{2}^{3}, P_{4}=\frac{4}{3} .
$$

Then, we construct three indecomposable A-modules to describe some basic τ-tilting modules. We first consider the τ-tilting A-module $P_{1} \oplus P_{2} \oplus P_{3} \oplus P_{4}$ and take an exact sequence with a minimal left $\operatorname{add}\left(P_{1} \oplus P_{2} \oplus P_{4}\right)$-approximation π_{1} of P_{3} :

$$
P_{3} \xrightarrow{\pi_{1}} P_{1} \oplus P_{2} \oplus P_{4} \longrightarrow \text { coker } \pi_{1} \longrightarrow 0 .
$$

We define $M_{1}:=$ coker π_{1} and $P_{1} \oplus P_{2} \oplus M_{1} \oplus P_{4}$ is again a τ-tilting A-module. Then, we take an exact sequence with a minimal left $\operatorname{add}\left(P_{2} \oplus M_{1} \oplus P_{4}\right)$-approximation π_{2} of P_{1} :

$$
P_{1} \xrightarrow{\pi_{2}} P_{2} \oplus M_{1} \longrightarrow \text { coker } \pi_{2} \longrightarrow 0
$$

and define $M_{2}:=$ coker π_{2}. Last, we consider the τ-tilting A-module $\underset{2}{\frac{1}{2}} \oplus \underset{2}{1^{3} 4} \oplus{ }_{2}^{3}{\underset{2}{3}}_{\frac{1}{2}}^{1_{2}^{1^{3}}}$ (one may check this by Definition 2.1.1) and define $M_{3}:=$ coker π_{3} as the cokernel of π_{3}, where π_{3} is the minimal left $\operatorname{add}\left(\frac{1_{2}^{3}}{2}{ }_{2}^{3} \oplus \underset{2}{\frac{1}{3}} \oplus \underset{2}{\frac{1}{3}^{3}}\right)$-approximation with the following exact sequence:

$$
\underset{2}{\frac{1}{3}} \xrightarrow{\pi_{3}}{\underset{2}{3}}_{1_{3}^{3} 4}^{\underbrace{3}_{2}} \stackrel{1^{3} 2}{2} \longrightarrow \text { coker } \pi_{3} \longrightarrow 0
$$

Next, by using $P_{1}, P_{2}, P_{3}, P_{4}, M_{1}, M_{2}, M_{3}$ and other explicitly described modules, we can give a complete list of τ-tilting $\widetilde{\mathcal{D}_{4}}$-modules by direct computation of left mutations.

$P_{1} \oplus P_{2} \oplus P_{3} \oplus P_{4}$	$2^{3}{ }_{4} \oplus P_{2} \oplus P_{3} \oplus P_{4}$	$P_{1} \oplus \underbrace{1^{3} 4}_{2} \oplus P_{3} \oplus P_{4}$	$P_{1} \oplus P_{2} \oplus M_{1} \oplus P_{4}$
$P_{1} \oplus P_{2} \oplus P_{3} \oplus \underset{2}{\frac{1}{3}{ }_{2}{ }^{2}}$	${ }_{2}^{3}{ }_{4}^{3} \oplus{\underset{2}{\frac{1}{3}}}_{\frac{1^{3}}{4}} \oplus P_{3} \oplus P_{4}$	$2^{3}{ }_{4} \oplus P_{2} \oplus{ }_{3}^{2} \oplus P_{4}$	$2^{3}{ }_{4} \oplus P_{2} \oplus P_{3} \oplus{\underset{2}{3}}^{\frac{1}{3}{ }_{2}}$
$P_{1} \oplus \underbrace{1^{3} 4}_{2}{ }^{\frac{1}{4}}{ }_{3}^{1} \oplus P_{4}$	$P_{1} \oplus P_{2} \oplus M_{1} \oplus{ }_{3}^{12}$	$P_{1} \oplus{ }_{3}^{14} \oplus M_{1} \oplus P_{4}$	$M_{2} \oplus P_{2} \oplus M_{1} \oplus P_{4}$
	$2^{3}{ }_{4} \oplus{ }_{2}^{1_{3}^{3}}{ }^{\frac{3}{4}} \oplus{ }_{4}^{3} \oplus P_{4}$	$M_{2} \oplus P_{2} \oplus{ }_{3}^{2} \oplus P_{4}$	$2_{2}^{3}{ }_{4} \oplus P_{2} \oplus{ }_{3}^{2} \oplus{ }_{2}^{3}$
$2^{3}{ }_{4} \oplus P_{2} \oplus{ }_{2}^{3} \oplus \oplus_{2}^{1^{3}{ }^{3}}$	${ }_{3}^{1^{3} 4} \oplus \oplus_{2}^{1_{2}^{3}}{ }^{\frac{3}{4}} \oplus \frac{1}{3} \oplus P_{4}$	$P_{1} \oplus{ }_{3}^{14} \oplus{ }_{3}^{1} \oplus P_{4}$	
$M_{2} \oplus P_{2} \oplus M_{1} \oplus{ }_{3}^{1}{ }^{2}$	$P_{1} \oplus{ }_{3}^{14} \oplus M_{1} \oplus{ }_{3}^{1}{ }^{2}$	$2_{3}^{4} \oplus{ }_{3}^{114} \oplus M_{1} \oplus P_{4}$	$M_{2} \oplus{ }_{3}^{2}{ }^{4} \oplus M_{1} \oplus P_{4}$
		${ }_{3}^{1{ }^{3} 4} \oplus_{2}^{\frac{1}{3}{ }^{3}{ }^{4}} \oplus{ }_{4}^{3} \oplus P_{4}$	$M_{2} \oplus{ }_{3}^{2}{ }^{4} \oplus{ }_{3}^{2} \oplus P_{4}$
$M_{2} \oplus P_{2} \oplus{ }_{3}^{2} \oplus_{1}^{3}{ }_{3}^{2}{ }^{2}$		$P_{1} \oplus{ }_{3}^{14} \oplus{ }_{3}^{1} \oplus S_{1}$	$M_{2} \oplus{ }_{3}{ }_{3}^{4} \oplus M_{1} \oplus{ }_{3}^{1}{ }^{2}$
$M_{2} \oplus P_{2} \oplus_{13}^{2}{ }^{2} \oplus_{3}^{12}{ }^{2}$	$2_{3}^{4} \oplus{ }_{3}^{14} \oplus M_{1} \oplus{ }_{3}^{1}{ }^{2}$	$P_{1} \oplus{ }_{3}^{1}{ }^{4} \oplus S_{1} \oplus{ }_{3}^{12}$	${ }_{3}^{2}{ }^{4} \oplus{ }_{3}^{14} \oplus S_{4} \oplus P_{4}$
	$2^{3}{ }_{4} \oplus \underset{2}{\frac{1}{3}^{3}} \oplus M_{3} \oplus{\underset{2}{3}}_{\frac{1}{3}^{3}}^{2}$		$M_{2} \oplus_{2}^{2}{ }_{3}^{4} \oplus{ }_{3}^{2} \oplus_{1}^{3}{ }_{3}^{2}{ }^{2}$
	$M_{2} \oplus{ }_{3}{ }_{3}{ }^{4} \oplus{ }_{1}^{1}{ }_{3}^{2}{ }_{2} \oplus_{1}^{1}{ }_{3}{ }^{2}$	$2_{3}{ }^{4} \oplus{ }_{3}^{14} \oplus{ }_{3}^{124} \oplus_{3}^{1}{ }^{2}$	${ }_{3}^{124} \oplus{ }_{3}^{1}{ }^{4} \oplus S_{1} \oplus{ }_{3}^{1}{ }^{2}$
${ }_{3}^{24} \oplus^{1}{ }_{3}^{4} \oplus S_{4} \oplus{ }_{3}^{124}$		$M_{3} \oplus \underset{2}{\frac{1_{3}^{3}}{4}}{ }_{2}^{\text {a }} \underset{2}{\frac{1}{3}} \oplus_{2}^{3}$	$2^{3}{ }_{4} \oplus{\underset{2}{1^{3}}{ }^{3} \oplus M_{3} \oplus{ }_{4}^{3}, ~}_{3}$
$2^{3}{ }_{4} \oplus{ }_{2}^{3} \oplus M_{3} \oplus{\underset{2}{3}}_{1^{3}}^{2}$	${ }_{3}^{1^{3} 4} \oplus \frac{1}{3} \oplus{ }_{4}^{3}{ }_{4}^{3} \oplus \stackrel{3}{3}_{\frac{1}{3}}^{2}$	$S_{2} \oplus{ }^{2}{ }_{3}^{4} \oplus \oplus_{3}^{2} \oplus \stackrel{1}{3}_{3}^{2}{ }_{3}$	$S_{2} \oplus{ }_{3}^{2}{ }_{3}^{4} \oplus_{1_{3}}^{2} \oplus^{2}{ }_{3}^{1}{ }^{2}$

${ }_{3}^{2}{ }^{4} \oplus S_{2} \oplus{ }_{3}^{124} \oplus{ }_{3}^{12}$	${ }_{3}^{124} \oplus S_{2} \oplus S_{1} \oplus{ }_{3}^{12}$	${ }_{3}^{124} \oplus{ }_{3}^{14} \oplus S_{1} \oplus S_{4}$	${ }_{3}^{4}{ }^{4} \oplus S_{2} \oplus S_{4} \oplus{ }_{3}^{124}$
$M_{3} \oplus{\underset{2}{3}}_{3}^{\frac{1}{3}} \underset{2}{\frac{1}{3}} \oplus_{4}^{3}$	$2_{2}^{3}{ }_{4} \oplus{ }_{2}^{3} \oplus M_{3} \oplus{ }_{4}^{3}$	$S_{3} \oplus \stackrel{1}{3}_{3}^{1} \oplus{ }_{4}^{3} \oplus \oplus_{3}^{3}$	${ }_{3}^{124} \oplus S_{2} \oplus S_{1} \oplus S_{4}$
$S_{3} \oplus_{2}^{3} \oplus \oplus_{2}^{\frac{1}{3}} \oplus_{4}^{3}$			

A. 4 Supporting materials of Lemma 5.2.3

We recall that the indecomposable projective $\widetilde{\mathcal{H}_{4}}$-modules are

$$
P_{1}=\frac{1}{2}, P_{2}={ }_{1}^{2}{ }_{3}^{2}, P_{3}={ }_{4}^{2}, P_{4}=\underset{3}{4} .
$$

Then, we construct two indecomposable $\widetilde{\mathcal{H}_{4}}$-modules to describe some basic τ-tilting modules. We first consider the τ-tilting $\widetilde{\mathcal{H}_{4}}$-module $P_{1} \oplus P_{2} \oplus P_{3} \oplus P_{4}$ and take an exact sequence with a minimal left add $\left(P_{1} \oplus P_{3} \oplus P_{4}\right)$-approximation π_{1} of P_{2} :

$$
P_{2} \xrightarrow{\pi_{1}} P_{1} \oplus P_{3} \oplus P_{4} \longrightarrow \text { coker } \pi_{1} \longrightarrow 0 .
$$

We define $M_{1}:=$ coker π_{1}. Second, we consider the τ-tilting $\widetilde{\mathcal{H}_{4}}$-module ${ }_{3}{ }^{2}{ }_{4} \oplus P_{2} \oplus_{1}{ }^{2}{ }_{4} \oplus_{1}{ }^{2}{ }_{3}$ (one can check this by Definition 2.1.1) and define $M_{2}:=$ coker π_{2} as the cokernel of π_{2}, where π_{2} is the minimal left $\operatorname{add}\left({ }_{3}{ }_{4}^{2} \oplus_{1}{ }_{1}^{2}{ }_{4} \oplus{ }_{1}{ }^{2}{ }_{3}\right)$-approximation with the exact sequence:

$$
P_{2} \xrightarrow{\pi_{2}}{ }_{3}^{2}{ }_{4} \oplus_{1}{ }^{2}{ }_{4} \oplus_{1}{ }^{2}{ }_{3} \longrightarrow \text { coker } \pi_{2} \longrightarrow 0 .
$$

Next, we can give a complete list of pairwise non-isomorphic basic τ-tilting $\widetilde{\mathcal{H}}_{4}$-modules by direct computation of left mutations, as displayed below.

$P_{1} \oplus P_{2} \oplus P_{3} \oplus P_{4}$	$3_{3}^{2}{ }_{4} \oplus P_{2} \oplus P_{3} \oplus P_{4}$	$P_{1} \oplus P_{2} \oplus 1_{1}{ }_{4} \oplus P_{4}$	$P_{1} \oplus P_{2} \oplus P_{3} \oplus 1^{2}{ }_{3}$
$P_{1} \oplus M_{1} \oplus P_{3} \oplus P_{4}$	$3_{3}^{2}{ }_{4} \oplus P_{2} \oplus 1_{1}{ }_{4} \oplus P_{4}$	$3_{3}^{2}{ }_{4} \oplus P_{2} \oplus P_{3} \oplus 1_{1}{ }_{3}$	${ }_{2}^{3}{ }^{4} \oplus M_{1} \oplus P_{3} \oplus P_{4}$
$P_{1} \oplus M_{1} \oplus{ }_{2}^{1}{ }^{4} \oplus P_{4}$	$P_{1} \oplus M_{1} \oplus P_{3} \oplus{ }_{2}^{1}{ }^{3}$	$P_{1} \oplus 2_{2}^{4} \oplus 1_{1}{ }_{4} \oplus P_{4}$	$P_{1} \oplus P_{2} \oplus 1_{1}{ }_{4} \oplus 1_{1}{ }_{3}$
$P_{1} \oplus{ }_{2}^{3} \oplus P_{3} \oplus 1_{1}{ }_{3}$	$3^{2}{ }_{4} \oplus 4_{4}^{2} \oplus 1^{2}{ }_{4} \oplus P_{4}$	$3_{3}{ }_{4} \oplus P_{2} \oplus 1^{2}{ }_{4} \oplus 1_{1}{ }_{3}$	$3_{3}{ }_{4} \oplus{ }_{3}^{2} \oplus P_{3} \oplus 1_{1}{ }_{3}$
${ }_{2}^{3}{ }^{4} \oplus M_{1} \oplus{ }_{2}^{1}{ }^{4} \oplus P_{4}$	$P_{1} \oplus M_{1} \oplus{ }_{2}^{1}{ }^{4} \oplus{ }_{2}^{13}$	${ }_{2}^{3}{ }^{4} \oplus M_{1} \oplus P_{3} \oplus{ }_{2}^{1}{ }^{3}$	${ }_{4}^{2} \oplus{ }_{2}^{4} \oplus 1_{1}{ }^{2}{ }_{4} \oplus P_{4}$
$P_{1} \oplus{ }_{2}^{4} \oplus{ }_{2}^{14} \oplus P_{4}$	$P_{1} \oplus 1_{1} \oplus 1^{2}{ }_{4} \oplus 1^{2}{ }_{3}$	$P_{1} \oplus{ }_{2}^{3} \oplus P_{3} \oplus{ }_{2}{ }_{2}^{3}$	${ }_{3}^{2} \oplus{ }_{2}^{3} \oplus P_{3} \oplus 1_{1}{ }_{3}$
$3^{2}{ }_{4} \oplus{ }_{4}^{2} \oplus 1^{2}{ }_{4} \oplus M_{2}$	$3_{3}^{2}{ }_{4} \oplus M_{2} \oplus 1_{1}{ }_{4}^{2} \oplus 1_{1}{ }_{3}^{2}$	$3_{3}^{2}{ }_{4} \oplus M_{2} \oplus{ }_{3} \oplus 1_{1}{ }^{2}$	$3_{2}^{34} \oplus M_{1} \oplus{ }_{2}^{1}{ }^{4} \oplus{ }_{2}^{1}{ }^{3}$
${ }_{3}^{3}{ }_{2}^{4} \oplus S_{4} \oplus{ }_{2}^{14} \oplus P_{4}$	$P_{1} \oplus S_{1} \oplus_{2}^{1}{ }_{2}^{4} \oplus_{2}^{13}$	${ }_{2}^{34} \oplus S_{3} \oplus P_{3} \oplus{ }_{2}{ }_{2}^{3}$	${ }_{2}^{4} \oplus S_{4} \oplus{ }_{2}^{1}{ }_{2}^{4} \oplus P_{4}$

$M_{2} \oplus{ }_{1}^{2} \oplus 1_{1}{ }_{4} \oplus_{1}{ }_{1}{ }_{3}$	${ }_{2}^{3} \oplus S_{3} \oplus P_{3} \oplus{ }_{2}^{1{ }_{2}^{3}}$	${ }_{1}^{2} \oplus{ }_{4}^{2} \oplus 1^{2}{ }_{4} \oplus M_{2}$	$3^{2}{ }_{4} \oplus M_{2} \oplus{ }_{3} \oplus_{4}^{2}$
$3_{2}^{4} \oplus^{4}{ }_{2}^{134} \oplus_{2}^{1}{ }_{2}^{4} \oplus{ }_{2}^{13}$	$3_{2}^{4}{ }^{4} \oplus S_{4} \oplus{ }_{2}^{1}{ }^{4} \oplus{ }_{2}^{134}$	${ }_{2}^{134} \oplus S_{1} \oplus{ }_{2}^{1}{ }^{4} \oplus{ }_{2}^{13}$	${ }_{2}^{3}{ }^{4} \oplus S_{3} \oplus{ }_{2}^{134} \oplus_{2}^{1}{ }_{2}^{3}$
$M_{2} \oplus{ }_{1} \oplus_{3}^{2} \oplus 1_{1}{ }_{3}$	$M_{2} \oplus_{1}^{2} \oplus{ }_{3}^{2} \oplus_{4}^{2}$	$S_{2} \oplus_{1}^{2} \oplus{ }_{3}^{2} \oplus{ }_{4}^{2}$	$S_{1} \oplus S_{4} \oplus{ }_{2}^{1}{ }^{4} \oplus{ }_{2}^{134}$
${ }_{2}^{3}{ }_{2}^{4} \oplus S_{4} \oplus S_{3} \oplus{ }_{2}^{134}$	$S_{1} \oplus S_{3} \oplus{ }_{2}^{134} \oplus{ }_{2}^{1}{ }^{3}$	$S_{1} \oplus S_{4} \oplus S_{3} \oplus{ }_{2}^{134}$	

A. 5 Supporting materials of Proposition 5.3.1

We recall that the indecomposable projective $\widetilde{\mathcal{K}_{4}}$-modules P_{1}, P_{2}, P_{4} are

$$
P_{1}=\frac{1}{2}, P_{2}=1_{4}^{2} \underset{4}{3}, P_{4}=\stackrel{4}{\frac{4}{3}} \underset{3}{2} .
$$

We may look at the structures of the indecomposable projective $\widetilde{\mathcal{K}_{4}}$-module P_{3} and the indecomposable injective $\widetilde{\mathcal{K}_{4}}$-module I_{3} in detail, that is,

Then, we construct two indecomposable $\widetilde{\mathcal{K}_{4}}$-modules to describe some basic τ-tilting modules. We first consider the τ-tilting $\widetilde{\mathcal{K}_{4}}$-module $P_{1} \oplus P_{2} \oplus{ }_{1}{ }^{2}{ }_{3}^{4} \oplus P_{4}$ and take an exact sequence with a minimal left $\operatorname{add}\left(P_{1} \oplus{ }_{1}{ }^{2}{ }_{3}^{4} \oplus P_{4}\right)$-approximation π_{1} of P_{2} :

$$
P_{2} \xrightarrow{\pi_{1}} P_{1} \oplus_{1}{ }_{3}^{2}{ }_{3}^{4} \oplus P_{4} \longrightarrow \text { coker } \pi_{1} \longrightarrow 0 .
$$

We define $M_{1}:=$ coker π_{1}. Second, we consider the τ-tilting $\widetilde{\mathcal{K}_{4}}$-module $P_{1} \oplus{ }_{1}{ }_{2}{ }_{3} \oplus_{1}{ }_{1}{ }_{3} \oplus_{1}{ }_{1}{ }_{2}^{3}{ }_{3}$ (one can check this by Definition 2.1.1) and define $M_{2}:=$ coker π_{2} as the cokernel of π_{2}, where π_{2} is the minimal left $\operatorname{add}\left(\underset{1}{2}{ }_{3}^{3} \oplus_{1}{ }_{1}^{2}{ }_{3} \oplus_{1} \oplus_{1}^{2}{ }_{4}^{3}\right)$-approximation with the exact sequence:

$$
P_{1} \xrightarrow{\pi_{2}}{ }_{1}^{2}{ }_{3} \oplus_{1}{ }_{4}^{3}{ }_{4}^{3} \longrightarrow \text { coker } \pi_{2} \longrightarrow 0 .
$$

Similarly, by using $P_{1}, P_{2}, P_{3}, P_{4}, M_{1}, M_{2}$ and other explicitly described modules, we can give a complete list of pairwise non-isomorphic basic τ-tilting $\widetilde{\mathcal{K}_{4}}$-modules by direct computation of left mutations.

$P_{1} \oplus P_{2} \oplus P_{3} \oplus P_{4}$	${ }_{4}^{2} \oplus P_{2} \oplus P_{3} \oplus P_{4}$	$P_{1} \oplus P_{2} \oplus_{1}{ }^{2}{ }_{3}^{4} \oplus P_{4}$	$P_{1} \oplus P_{2} \oplus P_{3} \oplus_{1} \stackrel{3}{2}{ }_{4}^{3}$
$P_{1} \oplus{ }_{3}^{1}{ }_{3}^{13}{ }_{4} \oplus P_{3} \oplus P_{4}$		${ }_{4}^{2} \oplus P_{2} \oplus 1_{1}{ }^{2}{ }_{3}^{4} \oplus P_{4}$	$\underset{4}{2} \oplus P_{2} \oplus P_{3} \oplus \stackrel{3}{2}_{\stackrel{3}{2}{ }_{3}^{4}}^{4}$
${ }_{4}^{3} \oplus{ }_{3}^{1}{ }_{3}^{3}{ }_{4} \oplus P_{3} \oplus P_{4}$			$P_{1} \oplus M_{1} \oplus_{1}{ }^{2}{ }_{3}^{4} \oplus P_{4}$

Bibliography

[Ad1] T. AdAchi, Characterizing τ-tilting finite algebras with radical square zero. Proc. Amer. Math. Soc., 144 (2016), no. 11, 4673-4685.
[Ad2] T. Adachi, The classification of τ-tilting modules over Nakayama algebras. J. Algebra, 452 (2016), 227-262.
[Asa] S. Asai, Semibricks. Int. Math. Res. Not. IMRN, (2020), no. 16, 4993-5054.
[Ass1] I. Assem, Iterated tilted algebras of types \mathbb{B}_{n} and \mathbb{C}_{n}. J. Algebra, 84 (1983), no. 2, 361-390.
[Ass2] I. Assem, Simply connected algebras. Resenhas, 4 (1999), no. 2, 93-125.
[Ao] T. Aoki, Classifying torsion classes for algebras with radical square zero via sign decomposition. Preprint (2018), arXiv: 1803.03795.
[AB] I. Assem and P. Brown, Strongly simply connected Auslander algebras. Glasgow Math. J., 39 (1997), no. 1, 21-27.
[AH] I. Assem and D. Happel, Generalized tilted algebras of type \mathbb{A}_{n}. Comm. Algebra, 9 (1981), no. 20, 2101-2125.
[AI] T. Aihara and O. Iyama, Silting mutation in triangulated categories. J. Lond. Math. Soc., 85 (2012), no. 3, 633-668.
[AK] T. Aihara and R. Kase, Algebras sharing the same support τ-tilting poset with tree quiver algebras. Q. J. Math., 69 (2018), no. 4, 1303-1325.
[AL] I. Assem and S. Liu, Strongly simply connected algebras. J. Algebra, 207 (1998), no. 2, 449-477.
[AR] M. Auslander and I. Reiten, On the representation type of triangular matrix rings. J. London Math. Soc. (2), 12 (1976), 371-382.
[AS] I. Assem and A. Skowroński, On some classes of simply connected algebras. Proc. London Math. Soc. (3), 56 (1988), no. 3, 417-450.
[AW] T. Aoki and Q. Wang, On τ-tilting finiteness of blocks of Schur algebras. Preprint (2021), arXiv: 2110.02000.
[AAC] T. Adachi, T. Aihara and A. Chan, Classification of two-term tilting complexes over Brauer graph algebras. Math. Z., 290 (2018), no. 1-2, 1-36.
[AIR] T. Adachi, O. Iyama and I. Reiten, τ-tilting theory. Compos. Math., 150 (2014), no. 3, 415-452.
[AIP] S. Ariki, K. Iijima and E. Park, Representation type of finite quiver Hecke
algebras of type $A_{\ell}^{(1)}$ for arbitrary parameters. Int. Math. Res. Not. IMRN, (2015), no. 15, 6070-6135.
[APR] M. Auslander, M. Platzeck and I. Reiten, Coxeter functors without diagrams. Trans. Amer. Math. Soc., 250 (1979), 1-46.
[ARS] M. Auslander, I. Reiten and S.O. Smalo, Representation theory of Artin algebras. Cambridge Studies in Advanced Mathematics, 36. Cambridge University Press, Cambridge, 1995.
[ASS] I. Assem, D. Simson and A. Skowroński, Elements of the representation theory of associative algebras. Vol. 1. Techniques of representation theory. London Mathematical Society Student Texts, 65. Cambridge University Press, Cambridge, 2006.
[AHMW] T. Aihara, T. Honma, K. Miyamoto and Q. Wang, Report on the finiteness of silting objects. Proc. Edinb. Math. Soc. (2), 64 (2021), no. 2, 217-233.
[Bau] R. Bautista, On algebras close to hereditary Artin algebras. An. Inst. Mat. Univ. Nac., Autonoma Mexico, 21 (1981), no. 1, 21-104.
[B1] K. Bongartz, Tilted algebras, in: Representations of algebras. Lecture Notes in Math., 903 Springer, Berlin-New York, (1981), 26-38.
[B2] K. Bongartz, Algebras and quadratic forms. J. London Math. Soc. (2), 28 (1983), no. 3, 461-469.
[B3] K. Bongartz, A criterion for finite representation type. Math. Ann., 269 (1984), 1-12.
[B4] K. Bongartz, Critical simply connected algebras. Manuscripta Math., 46 (1984), no. 1-3, 117-136.
[B5] K. Bongartz, Treue einfach zusammenhangende Algebren I. Comment. Math. Helv., 57 (1982), 282-330.
[Bar] M. Barot, Representation-finite derived tubular algebras. Arch. Math., 74 (2000), no. 2, 89-94.
[Bo] M. Boos, Staircase algebras and graded nilpotent pairs. J. Pure Appl. Algebra, 221 (2017), no. 8, 2032-2052.
[BB] S. Brenner and M.C.R. Butler, Generalizations of the Bernstein-Gel'fandPonomarev reflection functors. Representation theory, II Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., Lecture Notes in Math. 832 Springer, Berlin-New York, 1980.
[BoG] K. Bongartz and P. Gabriel, Covering spaces in representation-theory. Invent. Math., 65 (1982), no. 3, 331-378.
[BrG] O. Bretscher and P. Gabriel, The standard form of a representation-finite algebra. Bull. Soc. Math. France, 111 (1983), no. 1, 21-40.
[BH] Th. Brustle and Y. Han, Two-point algebras without loops. Comm. Algebra, 29 (2001), no. 10, 4683-4692.
[BGP] I.N. Bernšteǐn, I.M. Gelfand and V.A. Ponomarev, Coxeter functors, and Gabriel's theorem. Uspehi Mat. Nauk, 28 (1973), no. 2(170), 19-33.
[BPS] T. Brüstle, J. A. de la Peña and A. Skowroński, Tame algebras and Tits quadratic forms. Adv. Math., 226 (2011), no. 1, 887-951.
[CM] J. F. Carlson, and G. Matthews, Schur Algebras, $S(n, r)$. http://alpha.math.uga.edu/ jfc/schur.html.
[Dra] P. Dräxler, Completely separating algebras. J. Algebra, 165(1994), no. 3, 550-565.
[Dro] Yu. A. Drozd, Tame and wild matrix problems, in: Representation Theory II, Lecture Notes in Math., vol. 832. Springer Verlag, (1980), pp. 242-258.
[DG] P. Draxler and Ch. Geiss, On the tameness of certain 2-point algebras. CMS Conf. Proc. 18, Amer. Math. Soc. Providence, RI.
[DN] S.R. Doty and D.K. Nakano, Semisimple Schur algebras. Math. Proc. Cambridge Philos. Soc., 124 (1998), no. 1, 15-20.
[DP] A. Dean and J.A. de la Pena, Algorithms for weakly nonnegative quadratic forms. Linear Algebra Appl., 235(1996), 35-46.
[DR] S. Donkin and I. Reiten, On Schur algebras and related algebras V: Some quasi-hereditary algebras of finite type. J. Pure Appl. Algebra, 97 (1994), no. 2, 117-134.
[DIJ] L. Demonet, O. Iyama and G. Jasso, τ-tilting finite algebras, bricks and g-vectors. Int. Math. Res. Not., (2019), no. 9, pp. 852-892.
[DEMN] S.R. Doty, K. Erdmann, S. Martin and D.K. Nakano, Representation type of Schur algebras. Math. Z., 232 (1999), no. 1, 137-182.
[DirRT] L. Demonet, O. Iyama, N. Reading, I. Reiten and H. Thomas, Lattice theory of torsion classes. Preprint (2017), arXiv: 1711.01785.
[Er] K. Erdmann, Schur algebras of finite type. Quart. J. Math. Oxford Ser., 44 (1993), no. 173, 17-41.
[EH1] K. Erdmann and A. Henke, On Schur algebras, Ringel duality and symmetric groups. J. Pure Appl. Algebra, 169 (2002), no. 2-3, 175-199.
[EH2] K. Erdmann and A. Henke, On Ringel duality for Schur algebras. Math. Proc. Cambridge Philos. Soc., 132 (2002), no. 1, 97-116.
[EJR] F. Eisele, G. Janssens and T. Raedschelders, A reduction theorem for τ-rigid modules. Math. Z., 290 (2018), no. 3-4, 1377-1413.
[Geu] J. Geuenich, String Applet: https://www.math.uni-bielefeld.de/ jgeuenich/stringapplet/.
[Gei] Ch. Geiss, Tame distributive two-point algebras. CMS Conf. Proc., 14 (1993), 193-204.
[GAP] The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.11.1.
[H] M. Hagen, Derived tubular algebras and APR-tilts. Colloq. Math., 87 (2001), no. 2, 171-179.
[Han] Y. Han, Wild two-point algebras. J. Algebra, 247 (2002), no. 1, 57-77.
[Ha] D. Happel, On the derived category of a finite-dimensional algebra. Comment. Math. Helv., 62 (1987), no. 3, 339-389.
[He] A. Henke, Young modules and Schur subalgebras. Ph.D. thesis, Linacre College, Oxford, 1999.
[Ho] H.-J. von Hohne, Edge reduction for unit forms. Arch. Math., 65 (1995), no. 4, 300-302.
[HM] M. Hoshino and J. Miyachi, Tame two-point algebras. Tsukuba J. Math., 12 (1988), no. 1, 65-96.
[HR1] D. Happel and C. M. Ringel, Tilted algebras. Trans. Amer. Math. Soc., 274 (1982), no. 2, 399-443.
[HR2] D. Happel and C. M. Ringel, The derived category of a tubular algebra. In: Representation theory, I (Ottawa, Ont.), Lecture Notes in Math., Springer, Berlin, 1177 (1984), 156-180.
[HRS] D. Happel, J. Rickard and A. Schofield, Piecewise hereditary algebras. Bull. London Math. Soc., 20 (1988), no. 1, 23-28.
[HV] D. Happel and D. Vossieck, Minimal algebras of infinite representation type with preprojective component. Manuscripta Math., 42 (1983), no. 2-3, 221-243.
[Ja] G.D. James, The representation theory of the symmetric groups. Lecture Notes in Mathematics, 682. Springer, Berlin, 1978.
[K] R. Kase, From support τ-tilting posets to algebras. Preprint (2017), arXiv: 1709.05049.
[La] S. Ladkani, On derived equivalences of lines, rectangles and triangles. J. Lond. Math. Soc., 87 (2013), no. 1, 157-176.
[Ler] M. Lersch, Minimal wilde Algebren. Diplomarbeit, Düsseldorf, (1987).
[Les] Z. Leszczynski, Representation-tame locally hereditary algebras. Colloq. Math., 99 (2004), no. 2, 175-187.
[LS1] Z. Leszczyński and A. Skowroński, Tame triangular matrix algebras. Colloq. Math., 86 (2000), no. 2, 259-303.
[LS2] Z. Leszczyński and A. Skowroński, Tame tensor products of algebras. Colloq. Math., 98 (2003), no. 1, 125-145.
[Ma] S. Martin, Schur algebras and representation theory. Cambridge Tracts in Mathematics, 112. Cambridge University Press, Cambridge, 1993.
[Mi] Y. Mizuno, Classifying τ-tilting modules over preprojective algebras of Dynkin type. Math. Z. 277 (2014), no. 3-4, 665-690.
[Mo] K. Mousavand, τ-tilting finiteness of biserial algebras. Preprint (2019), arXiv: 1904.11514.
[MP] R. Martínez and J. A. de la Peña, The universal cover of a quiver with relations. J. Pure Appl. Algebra, 30 (1983), no. 3, 277-292.
[MS] P. Malicki and A. Skowroński, Cycle-finite algebras with finitely many τ-rigid indecomposable modules. Comm. Algebra, 44 (2016), no. 5, 2048-2057.
[NS1] R. Nörenberg and A. Skowroński, Tame minimal non-polynomial growth strongly simply connected algebras. Representation theory of algebras (Cocoyoc, 1994), 519-538, CMS Conf. Proc., 18, Amer. Math. Soc., Providence, RI, 1996.
[NS2] R. Nörenberg and A. Skowroński, Tame minimal non-polynomial growth simply connected algebras. Colloq. Math., 73 (1997), no. 2, 301-330.
[ONFR] Mustafa A. A. Obaid, S. Khalid Nauman, Wafaa M. Fakieh and Claus Michael Ringel, The number of support-tilting modules for a Dynkin algebra. J. Integer Seq., 18 (2015), no. 10, Article 15.10.6, 24 pp.
[Pe] J. A. de la Peña, Algebras with hypercritical Tits form. Topics in algebra, Part 1 Banach Center Publ., 26 (1988), 353-369.
[Pl] P. G. Plamondon, τ-tilting finite gentle algebras are representation-finite. Pacific J. Math. 302 (2019), no. 2, 709-716.
[Rin] C. M. Ringel, Tame algebras and integral quadratic forms. Lecture Notes in Mathematics, 1099. Springer-Verlag, Berlin, 1984.
[Ric] J. Rickard, Morita theory for derived categories. J. London Math. Soc., 39 (1989), no. 3, 436-456.
[RT] A. Rogat and T. Tesche, The Gabriel quivers of the sincere simply connected algebras. Erganzungsreihe, Bielefeld (1993).
[Sa] B.E. Sagan, The symmetric group. Representations, combinatorial algorithms, and symmetric functions. Second edition. Graduate Texts in Mathematics, 203. SpringerVerlag, New York, 2001.
[Sc] S. Schroll, Brauer graph algebras: a survey on Brauer graph algebras, associated gentle algebras and their connections to cluster theory. Homological methods, representation theory, and cluster algebras. (2018), 177-223,
[Sk1] A. Skowroński, Simply connected algebras and Hochschild cohomologies. CMS Conf. Proc., 14 (1993), 431-447.
[Sk2] A. Skowroński, Simply connected algebras of polynomial growth. Compositio Math., 109 (1997), no. 1, 99-133.
[Sk3] A. Skowroński, Selfinjective algebras: finite and tame type. Contemp. Math., 406 Amer. Math. Soc., Providence, RI, 2006.
[Sl] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. https://oeis.org/.
[SS1] D. Simson and A. Skowroński, Elements of the representation theory of associative algebras. Vol. 2. Tubes and concealed algebras of Euclidean type. London Mathematical Society Student Texts, 71. Cambridge University Press, 2007.
[SS2] D. Simson and A. Skowroński, Elements of the representation theory of associative algebras. Vol. 3. Representation-infinite tilted algebras. London Mathematical Society Student Texts, 72. Cambridge University Press, Cambridge, 2007.
[Un] L. Unger, The concealed algebras of the minimal wild hereditary algebras. Bayreuter Math. Schr., 31 (1990), 145-154.
[Ve] M. Vernon, On a construction of Young modules. Ph.D. thesis, University of Leicester, 2005.
[Wi] J. Wittman, Verkleidete zahme und minimal wilde Algebren. Diplomarbeit, Bayreuth, 1990.
[Xi] C. C. XI, On representations types of q-Schur algebras. J. Pure Appl. Algebra, 84 (1993), no. 1, 73-84.
[Zi] S. Zito, τ-tilting finite cluster-tilted algebras. Proc. Edinb. Math. Soc., (2) 63 (2020), no. 4, 950-955.

[^0]: ${ }^{1}$ These small cases are settled in another paper jointed with Toshitaka Aoki. Hence, we actually have a complete classification.

[^1]: ${ }^{1}$ We mention that some relations are omitted in the original Table T in Han so that several algebras (e.g., T_{4} and T_{5}) in the original Table T are not finite-dimensional. However, we have added these omitted relations in this thesis so that all algebras in Table T are finite-dimensional.

[^2]: ${ }^{1}$ A modern definition for an algebra A being standard is that A has a universal covering. However, the definition in BoG means that the Auslander-Reiten quiver of A is a mesh-category.

[^3]: ${ }^{2}$ As we mentioned in Remark 4.1.11, the definition of critical algebras used here comes from [SS2, XX, Definition 2.8], but not from B4].

[^4]: ${ }^{3} A$ is called minimal wild if A is wild, but $A / A e A$ is not wild for any non-zero idempotent e of A.

